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Trapped Rossby waves

Detlev Müller
Max Planck Institut fu¨r Meteorologie, D-20146 Hamburg, Germany

~Received 14 July 1999!

The possibility of tidal dynamics at strictly imaginary Lamb parameters has been known for more than three
decades. The present paper explores the prevailing physics in this parameter regime. To this end, basic features
of the global circulation such as baroclinicity and geostrophy have to be incorporated into tidal dynamics. The
tidal equations of the thermal wind are readily obtained in the framework of spherical bishallow water theory.
Density surfaces of a circulation with available potential energy alter the spatial inhomogenities of the generic
tidal problem. Wave dynamics in an inhomogeneous medium are characterized not only by a dispersion
relation but also by a wave guide geography: significant wave amplitudes are trapped in specific regions of
frequency-dependent width. As an inherently global issue, evaluation of the Rossby wave guide geography for
a given circulation cannot rely on the familiar regional filters of tidal theory. On the global domain, the Rossby
wave specification is given by the Margules filter. A thermal wind is stable against nondivergent Rossby wave
disturbances. Rossby waves propagating with a geostrophic wind are governed by prolate dynamics~real Lamb
parameters! while imaginary Lamb parameters emerge for the oblate dynamics of Rossby waves running
against a geostrophic wind. Oblate Rossby wave dynamics include pole-centered wave guides and very low-
frequency disturbances propagating eastward against a westward wind.

PACS number~s!: 47.35.1i, 92.10.Hm, 92.60.Dj, 47.32.2y
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I. INTRODUCTION

Wave trapping is a classical topic in planetary wa
propagation. Historically the first, still approximate solutio
to Laplace’s ‘‘tidal’’ equation@1# was Kelvin’s equatorially
trapped gravity wave@2# which currently plays a central rol
in intensive studies of the El Nino phenomenon@3,4#. The
notion of an ‘‘equatorial wave guide’’ was probably fir
introduced by Yoshida@5# and assumed a definite form wit
Matsuno’s equatorialb-plane approximation@6# of the
‘‘tidal’’ equation. On the rotating planet, the curvature of th
planetary surface in conjunction with coordinate-depend
Coriolis forces provides an inherently inhomogeneo
‘‘background medium.’’ The latitude dependence of met
and Coriolis forces establishes an equator-centered w
guide, the so-called ‘‘Yoshida guide.’’ This latitudinal inho
mogenity inhibits the communication of wave dynamical im
balances beyond a certain frequency-dependent horizon
‘‘critical latitude.’’ While wave functions are well approxi
mated by plane waves in the interior of the wave guide, th
behave as Airy functions near the critical latitude, oscillati
inside the guide and decaying exponentially on its outs
@7#. Moreover, topographic large-scale features of the pl
etary surface such as coasts and mountain ridges lead t
pographically trapped waves, the coastally trapped Ke
wave @8# being perhaps the best known oceanic example

In addition to these primary factors of planetary wa
guide geography, the global circulation of the oceans and
atmosphere itself affects the spatial distribution of trapp
regions. A considerable fraction of the intensity and orien
tion of the global circulation is controlled by pressure forc
due to sloping isopycnals, i.e., sloping surfaces of cons
density. Differential solar heating induces deviations
isopycnals from equipotential surfaces thus generating
available potential energy@9# of the circulation. A stably
stratified, vertically sheared flow of this type is called the
mal wind and the wave trapping characteristics of suc
PRE 611063-651X/2000/61~2!/1468~18!/$15.00
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circulation are determined by the slope of its isopycna
With these features wave guide geography is clearly a glo
issue. While regional approximations apply within a giv
wave guide such as Matsuno’s theory applies inside
Yoshida guide, the determination of the wave guide geog
phy of a circulation has to consider the global domain.
turn, the identification of trapping regions will suggest a
propriate approximations valid on these restricted doma
Moreover, wave guide geography will be subject to tempo
changes as the climate varies.

Similar to the analysis of hydrodynamic instabilities th
evaluation of wave guide geographies considers wa
circulation systems. However, in spite of this common fo
mal framework wave guide geography and stability prop
ties are to be carefully distinguished. For climate dynam
essentially three hydrodynamic instabilities are of grea
significance: static~i.e., Rayleigh-Benard! instability of the
unstably stratified fluid against internal gravity wave
Kelvin-Helmholtz instability of the stably stratified, verti
cally sheared fluid against baroclinic gravity waves, a
baroclinic instability of the thermal wind against diverge
Rossby wave disturbances. Static instability involves f
convective motions on small spatial scales and is gener
not explicitly resolved in numerical global circulation mod
els of the ocean and the atmosphere. Rather, its basic ro
driving the atmospheric Hadley circulation and the ocea
conveyor belt is taken into account by appropriate parame
zations. Kelvin-Helmholtz instability is associated with
transfer of mean flow kinetic energy to baroclinic gravi
waves. Since kinetic energies of terrestrial large-scale cir
lations are generally small, this instability is considered to
of minor significance for climate variability. In baroclinicall
unstable systems divergent Rossby waves draw on the a
able potential energy of the circulation. This process
thought to underly the meandering of the jet stream or
North Atlantic Gulf Stream as well as the generation of e
dies in the ocean and the atmosphere. It may also be n
1468 ©2000 The American Physical Society
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PRE 61 1469TRAPPED ROSSBY WAVES
that the development of hurricanes out of tropical Ros
waves is not an instability of this type. Baroclinic instabili
is considered the primary cause for the chaotic nature
Earth’s weather and possibly climate systems and prov
the starting point for contemporary theories of geostrop
turbulence.

In the framework of linear stability theory the analysis
these instabilities evaluates the system’s dispersion rela
and identifies wave growth with the emergence of comp
eigenfrequencies. A dispersion relation involves frequenc
and wave numbers or wave vectors, but no coordinates
the other hand, wave guide geography considers the ‘‘w
guide equation.’’ This equation is also obtained from t
system’s wave equation but in contrast to the dispersion
lation, it provides an expression for the critical latitude
terms of wave frequencies. In addition, it defines the in- a
exterior of the wave guide. As a relation between coordina
and frequencies the wave guide equation does generally
admit conclusions on the system’s stability properties.

The appropriate framework for the analysis of wave tra
ping is given by shallow water theory on the rotating sphe
cal surface. At this time, a large fraction of climate studies
based on Richardson’s primitive equations for a Boussin
fluid near the surface of the rotating sphere@10#. While these
equations provide a consistent account of equilibrium cir
lations and their thermodynamics, they do not pose a N
tonian dynamical problem. The covariant formulation of h
drostatic fluid dynamics is given by shallow water theory.
a vertically integrated approach shallow water theories r
resent hydrostatic vertical variability as internal variability
an otherwise strictly two-dimensional fluid. The no
Euclidean intrinsic geometry of the spherical surface is
counted for by the nontrivial Riemannian@11#. More than
equilibrium problems, spherical shallow waters address
sues of motion in the climate system.

Planetary wave dynamics essentially consider linear
tions of spherical shallow water theory. The key feature
wave dynamics on the global scale is the spatial variab
of geometric and Coriolis coefficients and the basic wa
equation on the rotating spherical surface is Laplac
‘‘tidal’’ equation. It may be noted at this point that the nam
‘‘tidal’’ equation is entirely historical. The significance o
Laplace’s equation lies primarily in the provision of the fu
damental free modes of small amplitude motions on the
tating spherical surface. Furthermore, the application of
equation to a particular~gravitational! forcing at a particular
~tidal! frequency certainly does not exhaust its power. Th
mally excited tides are a matter of longstanding meteorolo
cal interest@12#. Moreover, contemporary satellite altimet
provides records of equatorial and basin-scale ocean w
@13,14# primarily driven by wind and topography. The dy
namics of these waves are indeed governed by the ‘‘tid
equation. The same applies of course to the tropical oc
waves involved in the El Nino oscillation. While the notio
of a ‘‘global’’ or ‘‘planetary wave equation’’ would be far
more appropriate, the historical name will be kept in t
following.

Although the wave equation on the global domain
known for more than two centuries, geophysical fluid d
namics discuss wave propagation and wave mean-flow
tems essentially in terms of regional approximations such
y
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the f-plane, quasigeostrophic theory or the equatorialb
plane. Quasigeostrophic theory is a midlatitude, plane w
approximation which utilizes an approximate version of t
tidal wave guide equation as its generic dispersion relat
In fact, the concept has been developed to provide an e
to-use Cartesian, constant-coefficient algorithm for
analysis of wave-mean flow systems and the detailed st
of baroclinic instability. On the other hand, this structu
excludes wave trapping issues from the scope of quasig
strophic theory.

Matsuno’sb-plane theory approximates the spherical g
ometry in the vicinity of the equator in terms of Cartesi
coordinates. However, the success of this approach is
primarily based on this simplification. Rather, it is cruci
that this approximation is consistent with the wave gu
geography of the tidal equation: the Yoshida guide is a d
nite physical feature of the tidal equation and in the inter
of a given wave guide the curvature of the planet’s surfac
neglible. Moreover, the inherent consistency of Matsun
approximation with Laplace’s equation is emphasized by
existence of various derivations of the concept similar to
variety of arguments leading from the three-dimensional E
ler equations to the shallow water approximation. Matsun
approach is obtained by appropriate assumptions in sp
time or in wave number space or in the function space of
tidal equation. It may also be noted that the space-time
pects of the approximation originally go back to Kelvin@2#.

The dominance of regional approximations in planeta
wave dynamics is essentially due to the complexity
component-wise geometrical considerations in curvilin
coordinates. In the framework of covariant shallow wa
theory geometrical issues are well understood and the
nipulation of basic equations, e.g., the derivation of vortic
and energy budgets or wave equations is straightforw
What remains unsatisfactory though is the analytical side
the theory. Eigenfunctions of planetary wave equations s
as Laplace’s tidal equation belong to the class of Lame´ func-
tions. Unlike functions of the hypergeometric type the
functions are only poorly understood. Thus, planetary wa
dynamics utilize the combination of analytical and numeri
methods. While this approach cannot rely on the formal s
plicity of a Cartesian, constant-coefficient framework, it do
ensure geometric consistency on the global domain.

In the following, index notation will be used with indice
m,n, . . . 51,2 running over longitudel and latitudew. In
these coordinates the surface metric of a sphere with radia
reads

gmn5Ua2cos2w 0

0 a2U
while the Levi-Cevita tensor has the form

emn5a2~n2m!cosw.

The covariant derivative will be denoted by a semicolon. T
componentwise representation of geometrical tens
Christoffel symbols and further details of tensoranalysis
the spherical surface are given elsewhere@15#. Braced indi-
ces (l )51,2 refer to the top and bottom layer of the flu
and are not subject to the summation convention. Numer
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1470 PRE 61DETLEV MÜLLER AND ERNST MAIER-REIMER
solutions of Laplace’s tidal equation are based on a c
developed by Swarztrauber and Kasahara@16# while numeri-
cal computations of spheroidal and related wave functi
utilize NAG-Lib routineF02GJE.

II. TIDAL EQUATIONS OF THE THERMAL WIND

The stably stratified fluid on the rotating spherical surfa
will here be represented in terms of spherical bishallow w
ter equations@15#. The idealization of the continuously strat
fied fluid as a two-layer system is certainly an extreme s
plification. However, it does provide a qualitative an
consistent model of the dynamics of isopycnals and th
interplay with propagating disturbances. The bishallow wa
equations govern the dynamics of the hydrostatic two-la
fluid with constant, but different layer densitiesr (l ) and ver-
tically constant, but different layer velocitiesVn

(l )(t,l,w).
The layer-mass per unit area is given as

R5R(1)1R(2)5r (1)H (1)1r (2)H (2)

with layer thicknesses

H (1)5h0~ t,l,w!1h1~ t,l,w!, H (2)5h~l,w!2h1~ t,l,w!,

whereh0 denotes the free surface,h1 the layer interface, and
h the topographic bottom. All three of these surfaces
assumed to be material surfaces. In this approach, the
surface and layer-interface play the role of isopycnals. T
relative magnitude of the top layer is given in terms of t
concentration-type variable

r 5R(1) /R

such thatR(2)5(12r )R. The system’s barycentric mass flu
equals the barycentric momentum density~Newton’s first
law! and is defined as

Jn5RVn5R@rVn
(1)1~12r !Vn

(2)#

while the interfacial shear

Wn5Vn
(1)2Vn

(2)

determines an additional, baroclinic mass flux

I n5r 12RWn5r ~12r !RWn .

In terms of these variables the bishallow water equations
the continuity equation

] tR1Jn;n50, ~2.1!

the concentration equation

] tRr1~rJn1I n!;n50, ~2.2!

the barycentric momentum budget

] tJn1Pm
n ;m5RFn2emnf Jm, ~2.3!

and the shear equation

DtWn1WmQmn1]nm50. ~2.4!

The barycentric momentum flux tensor
e

s

e
-

-

ir
r
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e
ee
e

re

Pmn5JmVn1RPmn1Pgmn5Pnm

is symmetric with respect to the indicesm andn and involves
a baroclinic stress tensor

RPmn5I mWn5r 12RWmWn5RPnm

and the effective pressure

P5P~R,r !5
1

2
g (2)~11dr 2!R2.

Here,g (l )5g/r (l ) with gravitational accelerationg while

d5~g (1)2g (2)!/g (2)5~r (2)2r (1)!/r (1)

is the basic stratification parameter of the two-layer fluid. F
the stably stratified fluidd is always positive. The prognosti
closure for the baroclinic subsystem is given by the sh
equation~2.4! with

Qmn5Vn ;m1~122r !Wn ;m2Wn]mr 1emnf ,

where f 52V sinw denotes the Coriolis parameter and

m5g2d~rR1p* !

is an interfacial potential. The shear equation~2.4! represents
the covariant, prognostic and nonlinear generalization of
familiar thermal wind equation. External forces include
here are given by

RFn52g~H]np* 2R]nh!

with surface pressurep05gp* and the total layer thickness

H5H (1)1H (2)5~11dr !R/r (2) .

With vanishing vertical shearWn50, the three limitsr
50,r 51 or d50 reduce Eqs.~2.1!–~2.4! to the barotropic
one-layer system

] tR1Jn;n50, ~2.5!

] tJn1~JmVn!;m1]nP5RFn2emnf Jm, ~2.6!

where the effective pressure

P5P~R!5
1

2
gR2

with g5g/r now is a function of the effective densityR
5rH alone. Moreover, in these limits the external forces

Fn52g]n~p* /r2h!

are always expressible in terms of a potential.
In the time-independent limit (] t50) the shallow water

equations admit simple stationary, zonally symmetric (]l

50) solutions on the global domain. For the velocity field

Vn5a2U~cos2w,0!,
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PRE 61 1471TRAPPED ROSSBY WAVES
whereU is constant with the dimension of an angular velo
ity the momentum budget~2.6! of the one-layer system take
the form

a2~2V1U !U cosw sinw52g]w~h01p* /r!

indicating that meridional pressure gradients drive this zo
flow. Moreover, the balance involves terms linear in veloc
as well as quadratic terms. While the nonlinear terms
decisive for cyclostrophic flows, terrestrial large-scale circ
lations exhibit velocities which rarely exceed a tenth of t
rotation rate. In fact, the feasibility of ‘‘weather predictio
by barometer’’ and ocean ‘‘circulation estimation by hydro
raphy’’ on Earth rests on the simplicity of an essentia
linear relationship between wind speeds and ocean curr
on one hand and pressure forces on the other. Although
arithmetical contribution of these nonlinear terms is certai
neglible for such geostrophic circulations, they will be ke
here. As they do not introduce formal difficulties into prese
considerations it is not necessary to compromise the g
metrical and physical consistency of the solution. In the f
lowing, the notion of ‘‘geostrophy’’ will be used in referenc
to the orthogonality of flow and pressure gradients and
necessarily imply a discard of nonlinearities.

Geostrophy is generally considered an extratropical e
librium, not valid on the global domain. Here, it is seen th
the stationary momentum bugdet does not break down in
tropics but calls for a pressure extremum on the equa
Large-scale circulations on this planet exhibit indeed pr
sure extrema in the vicinity of the equator. However, due
topographic and thermodynamic details of the Earth’s s
face, these extrema are generally not located on the equ
with the rigid geometrical precision required by the abo
equations. Moreover, this simple geostrophic flow lacks
cellular structure particularly of the atmospheric circulatio
With time-independent nondivergent transports it does
involve rising or sinking motion. Essentially, it provides a
idealized representation of the basic geostrophic balanc
the global domain with the geometrical and physical con
tency of spherical shallow waters.

The equilibrium pressure suggests the distinction of t
classes of geostrophic flows: flows with constant layer thi
ness driven by external pressuresp* and flows driven by a
meridional gradient in layer thickness. In the first caseR
5const) the external surface pressure is of the form

p* 5p
*
E 2q sin2w

with the equator-to-pole gradient

q5p
*
E 2p

*
P5a2~2V1U !U/2g.

Here, the free surface coincides with an equipotential surf
and the flow has no available potential energy. This clas
solutions represents solid body rotation of the fluid layer

For the second class of these zonal circulations the ex
nal surface pressurep* is constant and the system posses
available potential energy. This type of solution is of partic
lar interest to geohydrodynamics. The terrestrial climate s
tem is primarily forced by differential solar heating. Th
forcing provides the direct supply of the global circulatio
with available potential energy@9#. Hence, these solution
-
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represent a major aspect of the basic forcing mechanism
the global circulation. Stationary, zonal, geostrophic so
tions of Eqs.~2.5! and ~2.6! with available potential energy
assume the form

R5RE2R0sin2w, Vn5a2U~cos2w,0!, ~2.7!

whereR05RE2RP measures essentially the equator-to-p
gradient of the layer thickness while the constantU satisfies

U52V6AV212gR0 /a2.

Expanding the root under the assumption thatV2

@2guR0u/a2 and choosing the plus sign leads to

U'gR0 /a2V

as an approximate expression for the flow-speed in the l
velocity limit. This is the usual geostrophic relation of flo
amplitude and pressure gradient.

The geostrophic circulation~2.7! is essentially character
ized by one nondimensional parameter: the geostrophy
rameter

b5R0 /RE5a2~2V1U !U/2gRE .

This parameter measures the equator-to-pole gradient o
pressure at the bottom of the system and thus the intensi
the zonal flow. It is comparable to Walker’s climatologic
North Atlantic Oscillation~NAO! index measuring the pres
sure difference between Lisbon and Stykkesholmur~Iceland!
and thus the intensity of predominantly westerly winds in t
Ferrel cell@17,18#. In the present case the velocity vanish
for constant layer thickness atb50 while the total layer
thickness at the poles becomes zero forb51. Geostrophy
parameters larger than one indicate that the fluid occu
less than the entire globe. Such cases will not be consid
in the following. It is emphasized that the possibility of fini
available potential energy for this barotropic system re
essentially on the free surface. With a rigid lid the quant
R0 and thus the geostrophy parameterb will always vanish.

The Lagrangian of Eqs.~2.5! and ~2.6! is invariant with
respect to particle relabeling and by Noether’s theorem
system thus conserves potential vorticity following partic
trajectories. For the present geostrophic flow the poten
vorticity is given by

RZ5eanVn ;a1 f 52~V1U !sinw. ~2.8!

In the low-velocity limit this reduces to the familiar approx
mationZ' f /R. The potential vorticity gradient assumes th
form

R2]nZ52~V1U !RE~11b sin2w!~0, cosw!. ~2.9!

Quasigeostrophic stability considerations suggest that a
change of the potential vorticity gradient is a necessary c
dition for instability @19#. Here, it is seen that such a ze
crossing may occur for westward flows withb,21. This
indicates a fundamental difference in the stability propert
of eastward and westward flows of the type~2.7!: for west-
ward flows the stabilizing effect of the eastward rotation d
creases.
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1472 PRE 61DETLEV MÜLLER AND ERNST MAIER-REIMER
Both of these types of geostrophic flows are readily g
eralized to bishallow water. Of primary interest here is t
thermal wind, i.e., a stably stratified, vertically sheared g
strophic flow with available potential energy. The corr
sponding stationary, zonally symmetric solution of Eq
~2.1!–~2.4! takes the form

R5RE2R0sin2w, R(1)5RE
(1)2R0

(1)sin2w, ~2.10!

Vn5a2U~cos2w,0!, Wn5a2W~cos2w,0!, ~2.11!

where

U5rU (1)1~12r !U (2) , W5U (1)2U (2)

with constantU (l ) while R05RE2RP and R0
(l ) , respec-

tively, denote the equator-to-pole gradient of the correspo
ing quantity. The surface pressurep* is here assumed to b
constant and for finiteR0 and R0

(l ) neither the free surface
nor the interface coincide with equipotential surfaces. For
flow amplitude one finds from the stationary momentu
budgets~2.3! and ~2.4!

q (1)5a2~2V1U (1)!U (1)52g (2)~R01dR0
(1)!,

q (2)5a2~2V1U (2)!U (2)52g (2)R0 .

Neglecting the nonlinear terms this yields the shear appr
mation

W'~q (1)2q (2)!/2a2V'g (2)dR0
(1)/a2V

in the low-velocity limit. This is the thermal wind relation i
the narrow sense: the vertical shear of the geostrophic flo
determined by stratification and the meridional gradient
the hydrostatic pressure at the layer interfaceh1. The ther-
mal wind circulation@Eqs.~2.10!, ~2.11!# is characterized by
two nondimensional parameters. The geostrophy parame

b5R0 /RE5a2~2V1U (2)!U (2)/2g (2)RE

measures again the meridional pressure gradient at the
tom of the system and thus the intensity of the zonal flow
the bottom layer. The baroclinicity parameter

b(1)5R0
(1)/RE

(1)5~q (1)2q (2)!/2g (2)dRE
(1)

'a2VW/g (2)dRE
(1)

measures the meridional pressure gradient at the layer i
face and thus the vertical shear of the circulation. The
rameterb(1) vanishes if the system is shear-free and assu
values larger than one if the bottom layer outcrops at so
latitude so that the fluid poleward of this latitude is only
one-layer system. Outcrops will not be considered in the
lowing.

A key feature of the bishallow water equations~2.1!–~2.4!
is the layer-wise conservation of potential vorticity in th
absence of external forcing, while the barycentric poten
vorticity is generally not conserved due to baroclinic vort
ity sources. By Noether’s theorem, the Lagrangian of bish
low water is hence invariant under intralayer relabeling
-
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fluid particles but generally not under inter-layer relabelin
For the barycentric potential vorticityZ of the thermal wind
~2.10!, ~2.11! one obtains

RZ5eanVn ;a1 f 52~V1U !sinw1eanWn]ar

involving additional contributions from the system’s vertic
variability in terms of the cross product of vertical shear a
concentration gradient. In terms of layer vorticities the ba
centric vorticity reads

RZ5R@r 2Z(1)1~12r !2Z(2)#1eanWn]ar .

This expression indicates that unlike the barycentric mom
tum density potential vorticity is not an additive quantity.

The small-amplitude dynamics on the thermal wind a
now obtained by linearization of the bishallow water equ
tions ~2.1!–~2.4! around the exact solution~2.10!, ~2.11!.
This linearization is identical with standard procedures
linear stability theory. In the present case the steady fl
(R,r ,Jn ,I n) is superposed by small amplitude disturbanc
(m,h, j n ,i n). The physical interpretation of these perturb
tions is given by their relation to the corresponding sm
amplitude disturbances (m(l ) ,vn

(l )) of the layer variables
(R(l ) ,Vn

(l )):

m(1)5rm1Rh,

m(2)5m2m(1) ,

and

j n5R~vn2hWn!5R@rvn
(1)1~12r !vn

(2)#5 j n
(1)1 j n

(2) ,

i n5r 12Rwn5r 12R~vn
(1)2vn

(2)!5~12r ! j n
(1)2r j n

(2) .

Here,m(2) represents vertical disturbances of the layer int
face whilem(1) measures the joint perturbation due to ver
cal displacements of the interface and the free surface.
barycentric and baroclinic momentum perturbations
simple linear combinations of the corresponding layer qu
tities. For sufficiently brief time intervals the amplitudes
such disturbances will remain small and their dynamics
governed by the linearization of the bishallow water equ
tions ~2.1!–~2.4! around Eqs.~2.10!, ~2.11!

d0m1 j n;n52RWn]nh, ~2.12!

Rd1h1 i n;n52r 12W
n]nm2 j n]nr , ~2.13!

d0 j n1emnF j m1g (2)R]nm1m]nm(1)

52Wm]mi n22emnSim, ~2.14!

d1i n1emnF1i m1~12r !m]nm(1)

52r 12~Wm]mj n12emnS jm!. ~2.15!

Equations~2.12!–~2.15! are the tidal equations of the the
mal wind. These equations are globally valid and geome
approximations are not involved. Advection in the baryce
tric and baroclinic subsystems are due to different mean fl
velocities and
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d05] t1U]l , d15] t1u]l

denote the corresponding partial substantial derivatives w
baroclinic advection velocity

u5~12r !U (1)1rU (2) .

Similarly, one has for the effective Coriolis parameters

F5rF (1)1~12r !F (2) , F15~12r !F (1)1rF (2)

with F (l )52(V1U (l ))sinw5R(l )Z(l ) for individual layers
and

2S5F (1)2F (2)52W sinw.

The representation of the linearized pressure forces in te
of (m,m(1)) has been chosen for convenience and transi
to the (m,h) representation is a matter of simple algebra

In spite of its idealization and linearity the system~2.12!–
~2.15! addresses a wide range of phenomena which are
rently considered essential to climate dynamics. These
clude the propagation of barotropic and~first mode!
baroclinic gravity and Rossby waves as well as linear sta
ity theory for geostrophic circulations on the rotating sphe
cal surface. Hence, Eqs.~2.12!–~2.15! determine stability
thresholds and growth rates for static, Kelvin-Helmholtz a
baroclinic instability. The quasigeostrophic approximation
Eqs.~2.12!–~2.15! is given by Phillip’s two-layer model@20#
and in the limit of vanishing mean available potential ener
the system has been used to evaluate the Kelvin-Helmh
instability condition on the rotating spherical surface@21#.
Here, it is of particular interest that Eqs.~2.12!–~2.15! also
determines the wave guide geography of the thermal w
@Eqs. ~2.10!, ~2.11!# and the system will hence be used
determine the distribution of trapping regions for Ross
waves.

III. GLOBAL ROSSBY WAVES

The specification to Rossby waves calls for the definit
of a Rossby wave filter for the tidal equations of the therm
wind ~2.12!–~2.15! which applies on the global domain. Th
will here be evaluated in the framework of the one-lay
limit of Eqs. ~2.12!–~2.15!. In this case the perturbation dy
namics reduce to

dtm1 j n;n50 ~3.1!

dt j n1emnF j m1gR]nm50. ~3.2!

These equations are also obtained by linearization of
barotropic shallow water equations~2.5!, ~2.6! around the
stationary, geostrophic circulation~2.7!. With the mean flow
potential vorticityZ given by Eq.~2.8! the perturbation po-
tential vorticity z of the one-layer system is defined as

Rz5eanvn ;a2Zm.

The budget of this quantity is obtained by taking the curl
Eq. ~3.2!

Rdtz1 j a]aZ50, ~3.3!
th

s
n

r-
n-

l-
-

d

,
ltz

d

y

n
l

r

e

f

where the mean potential vorticity gradient of the barotro
mean flow is given by Eq.~2.9!. For the positive definite
perturbation energy

e5
1

2
vnvn1gm2/2R,

Eqs.~3.1! and ~3.2! yield the budget

R] te1~eJn1sn!;n50

with Poynting vector

sn5gm jn

indicating that perturbation energy is conserved in the se
of Gauss’ theorem. The system~3.1! and ~3.2! governs the
dynamics of small-amplitude disturbances of a barotro
geostrophic circulation with available potential energy. If t
geostrophy parameterb and thus the available potential en
ergy vanishes Eqs.~3.1! and~3.2! reduces to Laplace’s tida
equations. In this case

gR5gH5c25const,

wherec denotes the intrinsic phase speed of the barotro
one-layer system. In the strict sense the mean flow velo
U also vanishes in this limit which constitutes the gene
tidal problem.

The generic tidal equations pose the fundamental w
propagation problem on the global domain and thus are
starting point of wave-circulation theory. Although the
equations are known for more than two centuries the co
plete analytical solution of this linear problem is still n
available. Tidal eigenfunctions belong to the class of dou
periodic or Lame´ functions. Physically, tidal dynamics con
sider wave propagation in an inhomogeneous and anisotr
medium. The primary sources of inhomogenity are the c
vature of the planetary surface and the Coriolis forces. Si
both, metric and Coriolis forces only depend on latitud
zonal wave dynamics differ significantly from those in m
ridional direction. Due to this anisotropy tidal eigenfunctio
are of the form

e2 i (vt2Ml)F~y;N,M ! ~3.4!

with frequencyv, zonal wave numberM, mode numberN,
and y5sinw. Solutions of this type propagate only in th
zonal direction and do not involve meridional propagatio
In this framework all phase as well as group velocities
exclusively zonal. Moreover, zonal variations are well rep
sented by plane waves. For the standing meridional w
this is not the case. The latitudinal inhomogenities of t
rotating spherical surface prevent the communication
wave dynamical imbalances beyond a certain critical latitu
and waves are trapped in zonally oriented, channel-like w
guides. Near the critical latitude, meridional wave functio
behave as Airy functions, oscillating inside the wave gu
and decaying exponentially on its outside. The width of t
wave guide is determined by the inhomogenities of the m
dium as well as the kinematics of the wave. Thus, latitudi
inhomogenity introduces a pronounced regionalization
wave activity on the rotating spherical surface. The wa
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guide geography of the tidal problem and generally of
wave-circulation systems is the global distribution of tra
ping regions given by the central and critical latitudes of
wave guides.

The wave guide geography of the nonrotating planet
pends on the curvature of the spherical surface and—s
poles are arbitrary—on the frequency and propagation di
tion of the wave. On the rotating planet rotation introduce
genuine anisotropy and wave guides are zonally orien
For the generic tidal problem the~nondimensional! Lamb
parameter

a52aV/c

provides the basic measure of the ratio of the rotation ve
ity and the intrinsic phase speed of the wave. On Earth,
parameter assumes a wide range of values. For given E
radiusa and rotation rateV variations of the Lamb param
eter express variations of the intrinsic phase speedc. In the
following, reference to baroclinic modes in conjunction wi
the barotropic one-layer system implies the ‘‘reduced gr
ity’’ or ‘‘equivalent height’’ interpretation of Eqs.~3.1!–
~3.3!. The Lamb parameter vanishes in two distinct limi
either the planet does not rotate (V50) or the waves are
nondivergent (c→`). For barotropic modes in the tropo
sphere it assumes valuesa'3 while a'60 for tropospheric
first baroclinic modes. In the ocean,a'5 in the barotropic
case anda'300 for waves in the first baroclinic mode. Th
Lamb parameter controls the trapping characteristics of t
eigenfunctions. With the eigenfunctions of the tidal proble
its ~nondimensional! eigenfrequencies

n5av/c5n~N,M ;a!

also depend on the Lamb parameter. In addition to the s
trum, wave dynamics in an inhomogeneous medium de
mine the wave guide geography in terms of the critical la
tude

ycr5ycr~n,M ;a!

and the central latitude of the guide.
The comprehensive numerical solution of the generic ti

problem has been given by Longuet-Higgins@22#. Essential
features of these tidal eigenfunctions are shown in Fig. 1
addition to the trapped solutions shown in Fig. 1~a! the tidal
equation also has untrapped solutions oscillating on the
tire domain. If waves are trapped the central latitude of
wave guide is the equator. The generic tidal problem o
admits the equator-centered Yoshida guide. This wave g
is by no means a narrow, tropical channel: with decreas
Lamb parameter the Yoshida guide extends to moderate
even high latitudes. Similar to Airy functions the amplitud
of tidal eigenfunctions increases towards the critical latitu

The solid lines in Figs. 1~b! and 1~c! show tidal eigenfre-
quencies obtained from the numerical solution of the gen
tidal equations~3.1! and ~3.2!. Fig. 1~b! is the ‘‘Lamb rep-
resentation’’ n5n(a,N;M ) of the dispersion relation a
fixed zonal wave numberM while Fig. 1~c! gives the ‘‘Mat-
suno representation’’n5n(N,M ;a) at fixed Lamb param-
eter. For the Matsuno representation it is noted that the l
age of eastern and western branches into one mode is
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unique operation since tidal eigenfrequenciesn depend only
on integerN andM. For the left (a53) panel of Fig. 1~c! the
Margules convention has been chosen while the middle (a
530) and right (a5300) panel follow the Matsuno conven-
tion. Both Figs. 1~b! and 1~c! exhibit the characteristic east-
west asymmetry of the tidal spectrum. Gravity waves propa
gate to the east as well as to the west and the lowest eastw
gravity mode is the Kelvin wave. For the generic tidal prob
lem low-frequency Rossby waves propagate exclusively t
the west. Both wave types are seperated by the Yanai wa
which behaves Rossby-like at small values ofa and gravi-
tylike at large Lamb parameters@23,24#.

On the basis of dispersive features of gravity waves on a

FIG. 1. ~a! Tidal eigenfunctions. Mass fluxj 2 for Rossby wave
with N54, M5210 at Lamb parametersa53,30,300.~b! Tidal
dispersion relation, Lamb representation. Solid lines: numerical s
lution of Eqs.~3.1! and ~3.2! at b50. Dotted lines, left and right
panel:~3.8! and ~3.10!. Dotted lines, middle panel:~3.7!. Dashed-
dotted line:n5a. ~c! Tidal dispersion relation, Matsuno represen-
tation. Solid lines: numerical solution of Eqs.~3.1!and ~3.2! at b
50. Dotted lines:~3.8! and ~3.10!. Dashed-dotted line:n5a.
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f plane~Poincare´ waves! it is often assumed that there are n
gravity waves with frequencies belowf. In tidal theory the
quantity corresponding to the Coriolis parameter of
f-plane approximation is the Lamb parametera. In the dis-
persion diagrams 1~b! and 1~c! the dashed-dotted line mark
frequenciesn5a. While it is obvious that the generic tida
problem does not admit Rossby waves with frequenc
higher thana, it is also seen that there are numerous grav
modes with frequenciesn,a. This is clearly the case a
those large values of the Lamb parameter that are rele
for baroclinic ocean waves. Only at very small values ofa
do all gravity frequencies exceed the Lamb parameter
tidal theory the seperation of gravity and Rossby mode
not provided by the Coriolis parameter but by the Yan
mode assuming a similar role as the well known Lamb wa
between internal gravity waves and acoustic modes. Mo
over, the Matsuno representation fora5300 corresponds
quantitatively most closely to the set of first baroclin
modes observed in the ocean. This diagram is freque
associated with ‘‘tropical waves’’ in view of the small widt
of the corresponding Yoshida guide. However, it is emp
sized that extratropical features of the generic tidal eig
functions do not introduce additional or qualitatively diffe
ent dispersion properties. This is seen in Fig. 1~c! from the
Matsuno diagrams fora53 ~corresponding approximatel
to barotropic modes in the ocean and the troposphere! and
for a530 ~corresponding approximately to first baroclin
modes in the troposphere!: both diagrams exhibit qualita
tively the same structure. What does differ at these param
values is the width of the Yoshida guide extending to mo
erate and high latitudes. In this sense the Matsuno diag
provides a qualitatively complete picture of the generic ti
dispersion properties. Unlike wave propagation in homo
neous media the tidal dispersion relation does not sug
that all disturbances populate all of the globe nor doe
provide information on the regions populated by specific d
turbances. The issue of geographical distribution of wave
addressed by the wave guide equation.

Interestingly enough the numerical solution of the tid
problem did not initialize extensive studies of wav
circulation systems on the global domain during the th
decades since its publication. Currently, issues of dynam
stability of the climate system are exclusively discussed
the basis of regional approximations such as Matsun
theory or the quasigeostrophic approximation. These
proaches provide approximate analytical expressions for
corresponding dispersion relation and, in the case of M
suno’s theory, the wave guide equation. Expressions of
type admit quite general conclusions on the modification
wave propagation and trapping due to mean flows as we
the mean flow response to small amplitude disturbances.
though the complete analytical solution of the generic ti
problem is not available at this time there are exact analyt
solutions in special cases and analytical approximations c
ering the entire wave number space of the tidal equat
These elements of the complete analytical solution do p
vide a basis for the analysis of aspects of propagation, t
ping, and wave circulation interplay on the global domain
well as the identification of well-defined Rossby wave filte

In the following a finite circulation velocityU will be
reintroduced while keeping the geostrophy parameter at z
e
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This inclusion of solid body rotation generalizes the kin
matics of the generic tidal problem with respect to the re
tion of advection, Doppler shift and the modification of th
Coriolis parameter. One wave equation of the tidal probl
is obtained by taking the divergence of Eq.~3.2! and elimi-
nating the perturbation momentum with the result

~dt
21F2!@~dt

21F22c2D!dt1c2emnFn]m#m

52c2Dmn]mF2]nm, ~3.5!

where

Dmn5gmndt1emnF.

This equation governs all waves involving a finite mass p
turbation. However, since the tidal problem also admits n
divergent Rossby waves, the null space of Eq.~3.5! contains
nontrivial solutions. These are explicitely included in th
more general vector wave equation which follows from ta
ing the time-derivative of Eq.~3.2! and eliminating the mass
perturbation

~dt
21F22c2D!dt j n1c2ena@]a~Fbj b!1Faj b;b#50

with

D j n5gabj n ;ab2Ganj a5S D2
1

a2D j n ,

whereGan5a22gan denotes the Ricci tensor of the spheric
surface@21#. This vector wave equation is the general tid
wave equation. A useful auxiliary wave equation is obtain
by multiplying it with the gradient of the Coriolis paramete
and using the vorticity budget~3.3!. For vanishing geostro-
phy parameter the vorticity budget reduces to

j aFa52R2dtz

and one obtains from the vector wave equation above

R2@~dt
21F22c2D!dt1c2emnFm]n#z5c2~DF ! j n;n .

~3.6!

Since Eq.~3.6! involves vorticities and divergencies it i
clearly not a closed equation. However, if the Laplacian
the Coriolis parameter is neglibly small~essentially inside
the Yoshida guide! or the disturbances are only weakly d
vergent equation~3.6! is seen to provide a fairly simple, ye
globally valid approximation for waves with finite potentia
vorticity. In essence,~3.6! is the spherical generalization o
Matsuno’s wave equation on the equatorialb-plane. In the
following ~3.6! will hence be addressed as the ‘‘spheric
Matsuno equation’’ or simply as the Matsuno equation.

Adopting the separation ansatz~3.4! for the mass pertur-
bationm, equation~3.5! becomes

~12t2y2!~D2a2y21n22tM !m

522@t2~12y2!y]y1tM #m,

where

t5a/n52~V1U !/~v02UM !
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andn now denotes the~nondimensional! Doppler-shifted fre-
quency

n5av/c5a~v02UM !/c

with the frequencyv0 ~of dimension 1/sec! seen by an ob-
server rotating with the planet while

a52auV1Uu/c

is the modified~nondimensional! Lamb parameter and th
inequality uUu!V always holds for large-scale flows o
Earth. For the Matsuno equation the divergence can be el
nated using the equations of motion~3.1!–~3.3! and the sepa-
ration ansatz~3.4! yields

~12qy2!~D2a2y21n21tM !z522@q~12y2!y]y2tM #z

with

q5n2/~n22M2!.

In special cases, exact analytical solutions to these equa
are known in terms of prolate spheroidal wave functio
@25,26#. In addition to the mode and zonal wave numbe
these functions depend on the Lamb parametera: at small
values ofa they behave as Legendre functions while th
resemble Hermite polynominals at large Lamb paramet
Details of spheroidal wave functions are given in the App
dix. Known exact analytical solutions@27,28# of the tidal
problem satisfy the dispersion relation

n32eP~N,M21;a!n2aM50, ~3.7!

whereeP denotes the prolate spheroidal eigenvalue. This
persion relation is exactly valid atV1U50 ~nonrotating
gravity waves!, n5a (M2-tide, the principal lunar tidal sig-
nal!, M50 ~standing waves! and c→` ~nondivergent
Rossby waves!. While ~3.7! is an exact analytical result fo
these four special classes it does remain a limitation th
closed expression foreP as function of its arguments is no
known. In practice~3.7! is exploited with the help of powe
series and asymptotic expansions foreP(a) as well as nu-
merical solutions of the prolate spheroidal wave equati
For standing waves (M50) solutions of~3.7! based on nu-
merical computations ofeP(N,1;a) are seen in the middle
panel of Fig. 1~b!.

The trapping characteristics of tidal eigenfunctions are
fined by the existence of a critical latitude in the vicinity
which the function exhibits Airy-type behavior. This critica
latitude follows directly from the wave equation. For stan
ing waves (M50) the Matsuno equation reduces to

@~12y2!]y
22a2y21n2#z50

indicating that an Airy approximation holds in the vicinity o

ycr
2 ~M50!5n2/a25v0

2/4~V1U !2

and is of the form

@~12ycr
2 !]x

22Wcrx#z'0,

wherex5y2ycr andWcr52a2ycr . Since always
i-

ns
s
s

s.
-

s-

a

.

-

-

Wcrx,0 for y2,ycr
2

standing waves oscillate equatorwards of the critical latitu
and decay exponentially towards the pole. Thus, stand
gravity waves with frequenciesn,a are trapped in the
equator-centered Yoshida guide with a width inversely p
portional to the Lamb parameter. Standing gravity wav
with frequencies higher thana are not subject to wave trap
ping. Moreover, it is seen that an eastward circulationU
.0) narrows the wave guide while a westward circulati
(2V,U,0) widens it. Similarly one finds the wave guid
equation for nonrotating gravity waves

ycr
2 ~V1U50!5~n22M2!/n2

or using the dispersion relation~3.7!

ycr
2 ~V1U50!5L/~L1M2!

with

L~N,M !5N~N11!1~2N11!uM u.

This expression indicates that trapping due to the surf
curvature alone affects primarily waves with large zon
wave numbers, i.e., zonally short waves. For theM2 tide
with n5a one obtains

a2ycr
4 2~2a22M !ycr

2 1a22M21M50

and for nondivergent Rossby waves

ycr
2 ~c→`!511sM ,

wheres51/t. In this case, the dispersion relation~3.7! yields

ycr
2 ~c→`!5L/~L1M2!

demonstrating the close resemblance of the trapping cha
teristics of nondivergent Rossby waves and nonrotating g
ity waves. In general, wave guide equations admit comp
solutions. However, such roots do not indicate an instabi
of the underlying and in the present case trivial ground st
but simply an absence of wave trapping. Physical soluti
to wave guide equations are necessarily confined to the
interval @21,1#. Unlike the dispersion relation, wave guid
equations yield information on the regionalization of sma
amplitude perturbations.

In addition to these exact solutions the wave equati
~3.5!, ~3.6! suggest various approximations which provide
overview of the entire wave number space of the tidal eq
tion. Of particular interest here is the Matsuno equat
~3.6!. Inside the Yoshida Guide or for weakly diverge
waves this equation reduces essentially to

~D2a2y21n22tM !z'0.

This approximation is a globally defined prolate spheroi
wave equation. Prolate spheroidal solutions of the appro
mate Matsuno equation are shown in Fig. 2. In compari
to Fig. 1~a! it is seen that these functions qualitatively as w
as quantitatively capture all features of tidal eigenfunctio
In fact, the degree of agreement between the numerical
lutions and these spheroidal approximations suggests tha
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complete analytical solution of the tidal equation can be
pressed in terms of prolate spheroidal wave functions.

The dispersion relation of the approximate Matsuno eq
tion follows as

n32eP~N,M ;a!n2aM'0 ~3.8!

while the wave guide equation becomes in this case

n3'S M2

12ycr
2

1a2ycr
2 D n1aM . ~3.9!

Similarly, one finds for high-frequency gravity waves wi
n.a a spheroidal approximation with dispersion relation

n32eP~N,M ;a!n1aM'0. ~3.10!

Using numerically computed prolate spheroidal eigenvalu
the eigenfrequencies~3.8! and ~3.10! are shown as dashe
lines in Fig. 1. Frequenciesn.a and the Kelvin frequencies
at largea are obtained from Eq.~3.10! while other low fre-
quenciesn,a of gravity and Rossby waves are calculat
with Eq. ~3.8!. It is seen from Fig. 1 that these spheroid
approximations generally represent tidal eigenfrequen
satisfactorily. However, gaps in the dotted lines for t
Kelvin and Yanai waves at moderate Lamb parameters i
cate that the approximations~3.8! and ~3.10! break down in
this parameter range. ForN50, small M and moderate
Lamb parameters

~eP/3!3,~aM /2!2

so that two of the roots of Eq.~3.8! and two of the roots of
Eq. ~3.10! become complex. Since it is known from the n
merical solution that all eigenfrequencies are real this
equality indicates the invalidity of the simple spheroidal a
proximations to Eqs.~3.5!, ~3.6! in this parameter range. In
these cases the right hand sides of Eqs.~3.5!, ~3.6! are not
neglible. In a small and restricted domain of wave num
space the spheroidal approximation to the wave equat
~3.5!, ~3.6! is thus inconclusive with respect to stability.

In spite of this applicability restriction, these formula
generalize various well known approximations of geophy

FIG. 2. Prolate spheroidal wave function. ForN54, M510 at
Lamb parametersa53,30,300.
-
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cal fluid dynamics. The dispersion relation~3.8! provides a
common basis for modes with finite potential vorticity. A
large intrinsic phase speeds (c→`) this relation reduces to
the exact solution~3.7!

v05UM22~V1U !M /L~L11!,

where L5N1uM u. This is Margules’ classical result fo
nondivergent Rossby waves@27#. In the large-c limit the
wave guide equation~3.9! becomes

ycr
2 511sM

in agreement with the previously obtained exact express
Furthermore, using the asymptotic expansion~see Appendix!
for the prolate eigenvalue at large values of the Lamb par
eter ~3.8! becomes

n32@a~2N11!1M2#n2aM'0.

This is the familiar dispersion relation of Matsuno’s equa
rial b-plane theory@6,8#. Inserting this dispersion relation
into the wave guide equation~3.9! one finds

ycr
2 '~2N11!/a,

the classical expression for the Yoshida Guide of Matsun
b-plane theory@8#: at large values of the Lamb parameter t
width of the wave guide is independent of the zonal wa
length. Solid body rotation merely modifies the width of th
Yoshida Guide: an eastward circulation narrows it while
westward circulation widens it.

The Matsuno wave guide equation~3.9! also provides a
direct link to readily observable large-scale disturbances
the ocean-atmosphere system. Setting

k5M /a cosw, F52~V1U !sinw, b52~V1U !cosw/a

this equation assumes the form

C3~ycr!5~c21Fcr
2 /k2!C~ycr!1c2bcr /k

2

with C(ycr)5v/k. For gravity waves this expression is su
ficiently approximated by

CG
2 ~ycr!'c21Fcr

2 /k2

stating that at the same zonal wavelength trapped gra
waves with wide Yoshida guides are faster than grav
waves with narrow guides. A corresponding eastward pro
gating wave front is frequently observed as atmospheric t
connection pattern in conjunction with El Nino@29#. Over
the Pacific this pattern is enhanced by low-latitude trades
midlatitude westerlies. It is furthermore seen that this a
proximation closely resembles the familiarf-plane dispersion
relation. However, it is emphasized thatf-plane dynamics
only approximate the zonal features of tidal dynamics and
not account for the anisotropy of the rotating spherical s
face. Tidal functions which approximately satisfy this dispe
sion relation~rather, wave guide equation! do not behave as
plane waves in the meridional direction. This interpretati
also clarifies the absence of Poincare´ waves with frequencies
below F: tidal gravity modes with lower frequencies o
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slower zonal phase speeds are trapped in narrower w
guides and do not exhibit a significant amplitude at the l
tude given byFcr .

For Rossby waves,CR
3(ycr) is neglibly small and the Mat-

suno wave guide equation is sufficiently approximated b

CR~ycr!'2c2bcr /~c2k21Fcr
2 !

stating that at the same zonal wavelength trapped Ro
waves with wide Yoshida guides are slower than Ros
waves with narrow guides. A corresponding westward pro
gating wave front is readily observed in satellite altimetry
the Pacific@13# as well as the Atlantic@14# sea surface asso
ciated with wind-driven oceanic Rossby waves. Tid
Rossby modes approximately satisfying this wave gu
equation are not well represented by plane waves in the
tudinal direction.

The wave dynamics given by Eqs.~3.8!, ~3.9! unify Mar-
gules’ nondivergent Rossby waves with Matsuno’s equa
rial b-plane approximation. The underlying wave equati
~3.6! is not really new. Its equatorialb-plane version is dis-
cussed in most text books on quasigeostrophic theory
prototype of ageostrophic motion. What is different, thoug
is the demonstration that these ageostrophic dynamics
vide a common basis for all Rossby modes of the gen
tidal equation. This is clearly seen in Figs. 1~b! and 1~c!: all
Rossby frequencies are well approximated by Eq.~3.8!.

The basic requirement for the identification of trappi
regions of general wave-circulation systems is the consi
ation of the global domain. The spheroidal approximat
~3.8!, ~3.9! of the Matsuno equation~3.6! exhibits essentia
features of an appropriate global Rossby filter of tidal d
namics: it applies on the entire spherical surface and capt
the low-frequency Rossby and gravity modes of the ti
spectrum. However, due to the breakdown of this appro
mation for the Yanai mode at moderate Lamb paramete
has to be discarded as ambiguous with respect to stab
conclusions.

Nevertheless, the key to the ageostrophic global Ros
wave dynamics of Eqs.~3.8!, ~3.9! is the neglibility of the
r.h.s. of Eq.~3.6! due to the small divergence of these d
turbances. In the limitc→` the generic tidal equations as
sume the form@27#

j n;n50, ~3.11!

dt j n1emnF j m1]np50. ~3.12!

The only eigenmodes of Eqs.~3.11!, ~3.12! are divergence-
free global Rossby waves. This limit represents the Margu
filter of Laplace’s tidal equation. Its space-time version@Eqs.
~3.11!, ~3.12!# corresponds uniquely to the previously us
Margules limit in wave number space and the related eig
functions of the generic tidal problem are Legendre fu
tions. Thus, the Margules filter is well defined in space-tim
wave number space, and in the function-space of the gen
tidal operator. The basic wave mechanism in this regim
the imbalance of horizontal momentum disturbances and
storing Coriolis forces. As with all nondivergent fluid mo
tion, pressure forces maintain a divergence-free mass
Moreover, the large-c limit does not impose restrictions o
modifications on the underlying circulation. With its prese
ve
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vation of the global domain, its uniqueness in space-tim
wave number space and function space the Margules l
@Eqs. ~3.11!, ~3.12!# provides the geometrically and phys
cally appropriate filter of tidal dynamics for the analysis
Rossby wave guide geographies of arbitrary circulations.

IV. ROSSBY WAVE GEOGRAPHY
OF THE THERMAL WIND

It has been shown in the previous section that a m
circulation affects the wave guide geography. In the sim
case of solid body rotation without available potential ene
such modifications remain limited to changes of the width
the Yoshida guide. This section considers more signific
alterations induced by a circulation with finite geostrop
and baroclinicity parameters. The governing equations of
basic wave-circulation system are the tidal equations of
thermal wind@Eqs.~2.12!–~2.15!#. Of particular climate rel-
evance are low-frequency Rossby wave disturbances and
global Rossby wave-circulation system follows from Eq
~2.12!–~2.15! by application of the Margules filter. This re
quires to consider the tidal equations of the thermal wind

j n;n5~ i n1r j n!;n50.

In terms of layer perturbations these conditions imply

~ j (1)
n 1 j (2)

n !;n5 j (1)
n ;n50

so that also

j (2)
n ;n50.

In view of the dynamics of nondivergent Rossby waves it
hence convenient to transform Eqs.~2.12!–~2.15! from the
bishallow representation to the 2-layer representation. Th
obtained by appropriate linear combination of Eqs.~2.12!–
~2.15! and one arrives at

d(l )m(l )1 j (l )
n ;n50,

d(l ) j n
(l )1emnF (l ) j (l )

m 1R(l )]np(l )50.

Here

d(l )5] t1U (l )]l , R(l )5RE
(l )~12b(l )sin2w!

with geostrophy parameters

b(l )5R0
(l )/RE

(l )5a2~2V1U (l )!U (l ) /g (l )RE
(l )

while one finds for the pressure perturbation

p(1)5g1m(1)1g2m(2) , p(2)5g2~m(1)1m(2)!5g2m.

With the Margules filter the layerwise mass flux perturb
tions can be represented in terms of stream functionsA(l )

j n
(l )5enm]mA(l )

and the curl of the layerwise momentum budgets yields

@~R(l )D2]aR(l )]a!d(l )2emnR(l )
2 ]mZ(l )]n#A(l )50.
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PRE 61 1479TRAPPED ROSSBY WAVES
For both layers these potential vorticity budgets have
same form and layer indices will therefore be dropped in
following. While divergent disturbances seperate the ti
equations of the thermal wind into barotropic and barocli
subsystems, the Margules filter seperates the system
respect to layers: nondivergent Rossby waves propagat
dependently in individual layers with the mean vertical sh
as the primary seperation-agent. The Rossby wave dyna
of the thermal wind are thus given by the dispersive a
trapping characteristics of the nondivergent eigenmode
two structurally identical systems of the form~3.1! with fi-
nite geostrophy parameters.

Since the mean potential vorticity gradient~2.9! of the
geostrophic flow in an individual layer satifies

R2]nZ5R]nF2F]nR

the perturbation potential vorticity budget may be cast in
form

R~Ddt2eabFa]b!A5DabRb]aA. ~4.1!

For vanishing available potential energy (]bR50), Eq.~4.1!
obviously reduces to the Margules wave equation of the
neric tidal problem. In the following, the spectrum and wa
geography of the full equation~4.1! will be considered. As-
suming the stream function to be of the form~3.4! one ob-
tains for Eq.~4.1!

v~D1tM !A522~buy]y2tM !A ~4.2!

with

u512y2, v512by2.

To the author’s knowledge an ordinary differential equat
of this structure is not in the literature and its analysis has
employ approximate analytical methods in conjunction w
numerical integrations. There are two alternative forms
this equation with advantages for specific questions. An
vious transformation casts Eq.~4.2! into the form

Fv2]y

u

v
]y2vS M2

u
2tM D22tM GA50 ~4.3!

clearly exhibiting the self-adjoint character of the wave o
erator. Secondly, introduction of the latitudinal coordinate

q5E
0

y

dx 1/Auv

and transformation to the function

C5u1/4v23/4A

leads to the Schro¨dinger equation

~]q
21E2V!C50 ~4.4!

with eigenvalue

E5
1

2
2

3

2
b2tM2M2
e
e
l

c
ith
in-
r
ics
d
of

e

e-

o

f
-

-

and the ‘‘potential’’

V~q!5bMtsn22~12b!F15

4
bsd22S M22

1

4D sc2G ,
where

sn5sn~qub!

andsd andsc correspondingly denote Jacobi’s elliptic fun
tions@25# of argumentq and parameterb. It follows from Eq.
~4.3! that the dispersion relation for Eq.~4.1! is of the form

s5s~N,M ;b!52M /e~N,M ;b! ~4.5!

with ~nondimensional! eigenfrequencies

s51/t5~v02UM !/2~V1U !

and eigenvaluee. Since the wave operator~4.3! is self-
adjoint its spectrum is real and hence the eigenfrequencie
Eq. ~4.1! are real. This is the statement of linear stability
the thermal wind@Eqs.~2.10!, ~2.11!# as well as the barotro
pic circulation with available potential energy~2.7!–~2.9!
against nondivergent Rossby wave disturbances. It
stressed that this does not claim the linear stability of th
wave-circulation systems in general. Kelvin-Helmholtz i
stability involves divergent baroclinic gravity waves an
baroclinic instability is assumed to be due to diverge
Rossby waves. Such disturbances are not included in
~4.1!.

From the Schro¨dinger equation~4.4! one obtains readily a
general expression for the critical latitude

ycr5ycr~s,M ;b!. ~4.6!

Setting

V~qcr!5E

and using the trigonometric representation of Jacobi’s ellip
functions@25# one finds

b2Mtycr
6 1ba4ycr

4 2a2ycr
2 2E50

with

a45bM21
5

2
~12b!2bMt11

and

a252bM21tM2
9

4
~12b!212.

In this form, Eq.~4.6! is the general wave guide equation f
nondivergent Rossby waves on a thermal wind. In the lim
of solid body rotation:b50 and the wave guide equatio
~4.6! reduces to

ycr
2 5S M21Mt2

1

2D Y S Mt2
1

4D'11sM
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1480 PRE 61DETLEV MÜLLER AND ERNST MAIER-REIMER
in agreement with the Margules limitc→` of the Matsuno
wave guide equation~3.9!. Minor discrepancies betwee
both expressions are due to the fact that Eq.~4.6! refers to
the functionC while Eq.~3.9! applies to the stream functio
A. If the layer thickness vanishes at the poles the geostro
parameter assumes the valueb51 and the wave guide equa
tion becomes

~ycr
2 21!~Mtycr

2 1Mt1M211!50

with two roots

ycr
2 51, ycr

2 52~M21Mt11!/Mt'2~11sM !.

For the second solution,ycr will become imaginary indicat-
ing the absence of wave trapping but not an instability of
ground state. In the limit of low frequenciess→0 the wave
guide equation~4.6! reduces to the simple expression

ycr
2 51/ubu.

At large absolute values of the parameterb geostrophic cir-
culations thus effect a pronounced regionalization of non
vergent low-frequency waves. The wave guide equation~4.6!
alone does not provide information on which side of t
critical latitude the wave function is oscillating. This issu
requires consideration of the derivative of the potentialV(q)
with respect toq at the critical latitude. However, the resul
ing expression is not very transparent and it is more con
nient to use analytical approximations of Eq.~4.1! as well as
numerical solutions.

Approximate analytical expressions for the eigenfunctio
of Eq. ~4.1! can be obtained in the limit of small absolu
values of the geostrophy parameter. Withubu!1 the first
order Taylor expansion ofv21 yields for Eq.~4.2!

~D2By22Mt!A'0, ~4.7!

where

B52bM/s

denotes the square of an effective Lamb parameter. This
spheroidal wave equation. However, unlike the wave eq
tions of the generic tidal problem, Eq.~4.7! is not necessarily
prolate. Only if disturbances run with the wind:bM.0 and
in this case, Eq.~4.7! is a prolate equation. On the othe
hand, for disturbances running against the wind:bM,0 and
in this case, Eq.~4.7! is an oblate spheroidal wave equatio
@25,26#. Both cases differ significantly with respect to the
wave guide geographies.

At b50, the effective Lamb parameter also vanishes a
Eq. ~4.7! reduces to the classical Margules limit of excl
sively westward propagating Rossby waves on a circula
without available potential energy. This system has been
cussed in the previous section. As long asB remains small
the stream functionA behaves essentially as a Legend
function. However, although the approximation~4.7! is
based on small absolute values of the geostrophy param
b, the square of the effective Lamb parameterB can well
become large particularly for low-frequency waves. IfB is
positive and large:B@1 the stream functionA is approxi-
mated by@26#
hy

e

i-

e-

s

a
a-

d

n
s-

ter

A5SL
M~y;AB!'uuM u/2e2x2/2HN~x!,

where HN(x) is the Hermite polynominal of orderN5L
2uM u and argumentx5yB1/4. This approximation capture
the oscillatory and trapping characteristics of prolate sp
roidal wave functions as shown in Fig. 2. ForB@1 applica-
tion of the spheroidal operator~4.7! to this representation
leads to the Hermite equation

S ]x
222x]x1

eP2M2

AB
21D HN50

and thus for the eigenvalue

eP'~2N11!AB1M2.

Since the prolate spheroidal eigenvalueeP is positive it fol-
lows from Eq.~4.5! thatM has to be negative and forB to be
positive the geostrophy parameterb also has to be negative
Hence, in the prolate case, Eq.~4.7! represents nondivergen
westward propagating Rossby waves on westward wi
such as the trades (bM.0,b,0,M,0). For the dispersion
relation ~4.5! this eigenvalue yields

sM21~2N11!A2bMs1M50

which is sufficiently approximated by

s'M /2b~2N11!2 ~4.8!

at low frequencies. Similar to Matsuno’s theory the critic
latitude follows as

ycr
2 '~2N11!/AB. ~4.9!

In the prolate case, metric and circulation cooperate to es
lish an equator-centered wave guide geography. Pronoun
equatorial trapping of divergence-free, westward propaga
Rossby waves requires a strong westward circulation.
basic structure of this approximation closely resembles M
suno’s theory. However, in the present case the ‘‘b-plane’’
coordinate is given byx5yB1/4. This definition becomes
void if the geostrophy parameterb vanishes. In contrast to a
mere tangential plane, regional approximations of
Matsuno-type rely on the wave geography of the underly
circulation.

For waves running against the wind the square of
effective Lamb parameter becomes negative:B,0 and the
stream function is given by the oblate spheroidal wave fu
tion

A5SL
M~y; iAuBu!.

These functions are shown in Fig. 3. In the oblate case
competition of trapping effects due to the metric and t
circulation generates equator- as well as pole-centered w
guides. The possibility of tidal dynamics at strictly imagina
Lamb parameters was first pointed out by Lindzen@12,22#.
Longuet-Higgins@22# demonstrated that the generic tid
spectrum at imaginary Lamb parameters is real and the t
sition from prolate to oblate tidal dynamicseo ipso is not
associated with instability. Since then oblate tidal dynam
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PRE 61 1481TRAPPED ROSSBY WAVES
have not received much attention primarily because
physics underlying oblate behavior remained essentially
clear. With spherical shallow water theory wave-circulati
systems can be considered on the global domain an
emerges here that Rossby waves running against a
strophic wind are governed by oblate tidal dynamics.

A major feature of oblate spheroidal wave functions
their degeneracy at large absolute values of the effec
Lamb parameter@26#: at some moderate value of the imag
nary Lamb parameter the eigenvalues of even and odd s
tions coalesce~see Appendix, Figs. 7 and 8!. At large abso-
lute values of the imaginary Lamb parameter there are
spheroidal wave functions with identical eigenvalue. F
large absolute values of the effective Lamb parameter ob
spheroidal wave functions are well approximated by@26#

SL
M~y; iAuBu!'uuM u/2e2x/2LK

uM u~x!,

where LK
uM u(x) is the generalized Laguerre polynominal

orderK5(L2uM u,L2uM u21)/2 if (L2uM u) is ~even, odd!
and argumentx52uBu1/2(12uyu). This representation ac
counts for significant wave amplitudes in the vicinity of th
poles. While Hermite polynominals are known from th
quantum oscillator, the Schro¨dinger wave function of quan
tum particles in a Coulomb field is given by generaliz
Laguerre polynominals@30#. Inserting this approximation
into the spheroidal equation~4.7! one arrives withuBu@1 at
the Laguerre equation

S x]x
21~ uM u112x!]x1

eO2B

4AuBu
2

uM u11

2 D LK
uM u50

and obtains for the eigenvalue

eO5B12NAuBu,

whereN52K1uM u11 is given by (L11,L) if ( L2uM u) is
~even, odd!. With Eq. ~4.5! this eigenvalue yields the dispe
sion relation

s52M /8bN2 ~4.10!

FIG. 3. Oblate spheroidal wave function. ForN54, M5210 at
Lamb parametersa53i ,30i ,300i .
e
n-

it
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e
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te

for nondivergent Rossby waves propagating against a g
strophic wind with available potential energy. Since the o
late spheroidal eigenvalue is not necessarily positive~see
Appendix, Figs. 7 and 8! two cases have to be distinguishe
For

s.ubMu/2N2

the oblate eigenvalueeO is positive. According to Eq.~4.5!
the zonal wave numberM has to be negative in this case an
for B to be negative the geostrophy parameterb has to be
positive. Hence, this regime applies to westward propaga
Rossby waves on an eastward wind (bM,0,b.0,M,0).
On the other hand, at very low frequencies

s,ubMu/2N2

the oblate eigenvalueeO is negative and zonal wave numbe
M have to be positive while geostrophy parametersb are
negative. This case represents eastward propagating Ro
waves on a westward wind (bM,0,b,0,M.0). Unlike the
generic tidal problem the tidal equation of the geostrop
wind with available potential energy also admits eastw
propagating Rossby waves at very low frequencies. Form
these eigenmodes are a consequence of negative oblate
roidal eigenvalues. The oblate wave guide geography of
Laguerre-limit of Eq.~4.7! follows now much the same wa
Bohr’s quasiclassical atomic theory follows from the qua
tum mechanics of a Coulomb particle@30#. For x/2@1,
stream functions basically decrease exponentially and
obtains thus for the width of the pole-centered wave guid

12uycru'1/AuBu51/4ubuN, ~4.11!

where the dispersion relation~4.10! has been used in th
second equation. At small geostrophy parameters, hig
modes of Rossby waves running against the wind are trap
in the vicinity of the pole. For small absolute values ofb,
large-B approximations to Eq.~4.7! in the oblate as well as
in the prolate case apply essentially at large mode num
N. Similar to the Hermite approximation for the Yoshid
guide, the Laguerre approximation becomes meaningles
the polar wave guide vanishes physically.

The spheroidal approximation~4.7! to the wave equation
~4.1! provides a qualitative overview of the dynamics of no
divergent Rossby waves on a circulation with small geos
phy parameter. A more detailed quantitative picture of
wave dynamics of nondivergent Rossby waves on a g
strophic flow is obtained by numerical integration of E
~4.1!. These integrations are not restricted to weakly g
strophic circulations. The employed code evaluates a
cretized version of Eq.~4.3! with 400 points in the interval
ye@21,1# using NAG-Lib routineF02GJEfor geostrophy pa-
rametersb<1. Figure 4~a! shows the Matsuno represent
tion of the dispersion relation for geostrophy parameterb
523,0,1, while the Lamb representation forM524,21,1
is given in Fig. 4~b!.

The middle panel of Fig. 4~a! with b50 represents Mar-
gules’ Rossby modes of the generic dispersion relation~3.7!
and is here given for reference purposes. Numerically ca
lated antisymmetric solutions of Eq.~4.1! for westward
Rossby waves on an eastward circulation withb51 are
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1482 PRE 61DETLEV MÜLLER AND ERNST MAIER-REIMER
shown in Fig. 5. The right panel of Fig. 4~a! as well as the
left (M524) and central (M521) panel of Fig. 4~b! show
that the spectrum atb51 exhibits the characteristic oblate
coalescence of eigenfrequencies. Figure 4 demonstrates
thermore that sufficiently large positive geostrophy para
eters~eastward circulation! lead to the emergence of Rossb
waves with frequencies exceeding the Lamb parame
s.1. As such high-frequency Rossby modes are excluded
generic tidal dynamics their appearance here is a sole co
quence of the finite available potential energy of the circu
tion.

The left panel (b523) of Fig. 4~a! and the right panel
(M51) of Fig. 4~b! show very low eigenfrequencies of eas
ward propagating Rossby waves. It is emphasized that
each eigenfrequency at a positive zonal wave number th

FIG. 4. ~a!. Rossby wave frequencies. Matsuno representation
geostrophy parametersb523,0,1. ~b! Rossby wave frequencies
Lamb representation for zonal wave numbersM524,21,1.

FIG. 5. Stream function of pole-trapped, westward Ross
waves on eastward circulation.
ur-
-

r:
in
se-
-

or
re

exist two eigensolutions: an eigenfunction which is symm
ric with respect to the equator as well as an antisymme
eigenfunction. Antisymmetric solutions of Eq.~4.1! at nega-
tive eigenvalues are shown in Fig. 6 clearly exhibiting t
pole-trapped nature of these solutions. Eastward propaga
Rossby waves are exclusively due to the finite available
tential energy of the westward circulation. Eastward Ros
waves ~i.e., negative eigenvalues!, degeneracy and pola
trapping are characteristic features of oblate spheroidal w
functions. Figures 5 and 6 show that the oblate trapping ch
acteristics of Eq.~4.1! at large absolute values ofb differ
from those at small geostrophy parameters. Pole-cent
wave guides become wider as the absolute value ofb and the
mode numberN increase.

The combination of analytical approximations and n
merical integrations provides a comprehensive overview
the eigensolutions of Eq.~4.1!. A sufficiently strong geo-
strophic circulation with available potential energy signi
cantly affects the regional distribution of Rossby wave a
plitudes. Westward waves propagating on a westward w
are trapped in an equator-centered wave guide. Westw
waves on an eastward wind can have high frequencies
.1 and are trapped in a pole-centered wave guide. W
ward winds allow very low-frequency eastward propagat
Rossby waves trapped in the vicinity of the poles. Matsu
type regional approximations exist for the interior of th
equatorial as well as the polar wave guide.

Westward Rossby waves on westward trade winds
widely observed in the tropical troposphere. The effect of
intensity of the trades on the meridional width of these d
turbances is governed by Eq.~4.1!. For Rossby waves in the
tropical ocean the mean circulation plays a minor role a
these disturbances are sufficiently represented by gen
Matsuno theory. At higher latitudes, the circulation of t
troposphere as well as the antarctic ocean is essentially
ward and disturbances propagate generally with the fl
Equation~4.1! does not represent wave-circulation syste
of this type. In these cases the inclusion of divergent dis
bances is necessary. For the high latitude stratosphere
spectrum of Rossby waves propagating against the win
not known at this time.

at

y

FIG. 6. Stream function of pole-trapped, eastward Ros
waves on westward circulation.
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V. SUMMARY

The mathematical physics of global wave-circulation s
tems are given by spherical shallow water theory. The ti
equations of the thermal wind govern the small-amplitu
dynamics of a bifluid in a non-Euclidean geometry. Met
and Coriolis forces on one hand and the circulation on
other cooperate and compete in establishing the system’
homogenity and anisotropy. The resulting background str
ture effects a pronounced regionalization of low-frequen
disturbances. The dynamics of equator-trapped wa
closely resemble quantum mechanics in a potential w
while pole-trapped waves behave similar to atomic partic
in a Coulomb field. Various transport mechanisms of
climate system globalize regionally confined variability.

Earth’s climate is primarily forced by differential sola
heating. This forcing supplies the global circulation wi
available potential energy. The spherical shallow water eq
tions admit simple stationary, zonal and geostrophic so
tions with available potential energy. In the barotropic ca
these solutions form a one-parameter family where the g
strophy parameter essentially coincides with the climatolo
cal NAO-index. Finite available potential energy does n
require the circulation to be baroclinic. For the bishallo
fluid, corresponding thermal wind solutions form a tw
parameter family. In addition to the geostrophy paramete
thermal wind is characterized by a baroclinicity parame
measuring the vertical shear in terms of the amplitude of
baroclinic pressure gradient. Linearization of the bishall
water equations around such a stationary circulation yie
the tidal equations of the thermal wind. These equations g
ern the dynamics of small amplitude disturbances of a sta
stratified, stationary, zonal, geostrophic and vertica
sheared circulation with available potential energy. In sp
of their relative simplicity the tidal equations of the therm
wind address a wide range of essential dynamical issue
the climate system. In addition to the propagation of baro
pic and ~first mode! baroclinic gravity and Rossby wave
they determine the linear stability of the thermal wind
well as the regional distribution of wave activity.

The distinguishing feature of wave dynamics on the g
bal scale is the regionalization of low-frequency distu
bances. Spatial variability of the metric, the Coriolis forc
and the circulation generate an inhomogeneous and an
tropic background that traps low-frequency waves in zona
oriented wave guides. In addition to the spectrum, glo
wave dynamics are thus characterized by a wave guide
ography. For the generic tidal problem the regionalization
wave activity is determined by the equator-centered Yosh
guide. Depending on frequency, this wave guide extend
moderate and high latitudes. In the vicinity of the critic
latitude, tidal eigenfunctions differ significantly from plan
waves. At this time, wave-circulation theory still lacks th
complete analytical solution of the generic tidal problem.
the entire wave number space, approximate analytical s
tions in terms of Lame´-type spheroidal wave functions ar
known. In special cases, exact analytical solutions can
represented in terms of these functions. At large Lamb
rameters spheroidal approximations coincide with Matsun
equatorial b-plane theory. Unlike an arbitrary tangenti
plane, this concept approximates the interior of the Yosh
-
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guide and becomes void if the wave guide vanishes ph
cally. An ageostrophic spherical Matsuno equation unifi
Margules’ nondivergent Rossby waves with Matsuno
theory. This unification represents all Rossby modes of
generic tidal spectrum. The unique and covariant Rossby
ter of tidal dynamics is given by Margules’ large-c limit.
This filter eliminates all but low-frequency, ageostroph
nondivergent Rossby modes from the tidal equations. A
retains the global domain of tidal dynamics, the Margu
filter is appropriate to determine the global Rossby wa
guide geography of general circulation systems.

The Margules filter decomposes the tidal equations of
thermal wind into two independent layer subsystems with
vertical shear as the major separation agent. Rossby w
dynamics on the thermal wind are thus determined by
spectrum and wave geography of the nondivergent eig
modes of two structurally identical tidal equations wi
available potential energy. Both layers and thus the ther
wind are linearly stable against nondivergent Rossby w
disturbances. The wave guide geography of the thermal w
is determined by the cooperation and competition of trapp
effects due to surface curvature and Coriolis forces on
hand and the circulation on the other. In the prolate c
curvature and Coriolis forces cooperate with the circulat
in establishing an equator-centered wave guide. A westw
circulation enhances equatorial trapping of westward pro
gating, divergence-free Rossby waves. In the oblate case
vature and Coriolis forces compete with the circulation a
both, equator-centered as well as pole-centered wave gu
are possible. Oblate dynamics govern nondivergent Ros
waves propagating against the wind. For sufficiently stro
circulations these Rossby waves are trapped in a p
centered wave guide. Westward circulations admit very lo
frequency eastward propagating Rossby waves while w
ward Rossby waves on intenser eastward circulations exh
frequencies in excess of the Lamb parameter. Oblate de
eracy admits symmetric as well as antisymmetric mode
the same eigenfrequency. Regional approximations in te
of orthogonal polynominals exist for both, prolate and obla
wave guide geographies. In the prolate case wave funct
inside the Yoshida guide are approximated by Hermite po
nominals essentially corresponding to Matsuno’s theory.
side the polar wave guide, on the other hand, wave functi
are approximated in terms of generalized Laguerre po
nominals. Both approximations depend on the physical e
tence of the wave guide.

The present paper demonstrated the regionalization
nondivergent eigenmodes on a circulation with available
tential energy. The inclusion of divergent eigenmodes w
also raise the issue of instabilities and their geograp
While the results of this study imply a regionalization of th
susceptibility to wave growth, the variability of the circula
tion is generally global in nature. From El Nino dynami
inside the oceanic Yoshida guide it is well known that coa
ally trapped Kelvin waves as well as atmospheric teleconn
tions provide modes of globalization for regionally confin
variability. Complete global variability patterns are dete
mined by the composite effect of wave activity as well
advective and diffusive transports.



h
iv

s
-

a

ro

cte

id

m
n

da
id
lu

-

at
l
n-

Left
s
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APPENDIX: SPHEROIDAL WAVE FUNCTIONS

In contrast to functions of the hypergeometric type, t
literature on spheroidal wave functions is not very extens
@26,31,32#. Basic properties are given in Ref.@25#. Prolate
spheroidal wave functionsSL

M(y;a) of integer degreeL and
orderM satisfy the equation

F ]y~12y2!]y2
M2

12y2
2a2y21ePGSL

M~y;a!50

for real Lamb parametersa and remain regular at the pole
y561. At small values ofa, prolate spheroidal wave func
tions behave as Legendre functions

SL
M~y;a2!1!'PL

M~y!

while they are approximated by Hermite polynominals
largea

SL
M~y;a2@1!'~12y2! uM u/2e2x2/2HN~x!

with argumentx5yAuau and orderN5L2uM u. At fixed
degree and order numerical solutions of the prolate sphe
dal wave equation are shown in Fig. 2 for varyinga. The
Lamb parameter is seen to control the wave guide chara
istics.

For the function

F~y;a!5~12y2!21/2SL
M~y;a!

the prolate spheroidal wave equation yields the wave gu
equation

a2ycr
4 2~a21eP!ycr

2 1eP2M21150

with the solution

2a2ycr
2 5a21eP6A~a22eP!214a2~M221!

and the limit

ycr
2 5~eP2M211!/eP

at a50. The critical latitude decreases with increasing La
parameter. In the vicinity of the critical latitude the functio
F satisfies the Airy-type equation

@~12ycr
2 !]x

22Wx#F'0

with x5y2ycr and

W~ycr!52ycrS M221

~12ycr
2 !2

1a2D .

For finite M the inequality

Wx,0

always holds ify2,ycr
2 and henceF oscillates exclusively

equatorwards of the critical latitude. The prolate spheroi
wave equation only admits an equator-centered wave gu

A closed expression for the prolate spheroidal eigenva
is not known. Ifa is small
e
e

t

i-

r-

e

b

l
e.
e

eP~L,M ;a2!1!'L~L11!1O~a2!

while at large values of the Lamb parameter

eP~L,M ;a2@1!'~2N11!uau1M21O~ uau0!.

For all values ofa the prolate eigenvalue exhibits the sym
metry

eP~L,M ;a!5eP~L,2M ;a!.

Numerically calculated prolate spheroidal eigenvalues
fixed zonal wave numberM50 are shown in the right pane
of Fig. 7 while the left panel of Fig. 8 shows prolate eige
values ata510 for varying zonal wave number.

Oblate spheroidal wave functionsSL
M(y; i ā) of integer de-

greeL and orderM satisfy the equation

F ]y~12y2!]y2
M2

12y2
2a2y21eOGSL

M~y;a!50

FIG. 7. Spheroidal eigenvalues. Lamb representation forM
50.

FIG. 8. Spheroidal eigenvalues. Matsuno representation.
panel: prolate eigenvalues ata510. Right panel: oblate eigenvalue
at a510i .
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for Lamb parametersa5 i ā with real ā and remain regular
at the polesy561. At small values ofa oblate wave func-
tions behave like Legendre functions while they are appro
mated by generalized Laguerre polynominals

SL
M~y;a2!21!'~12y2! uM u/2e2x/2LK

uM u~x!

at large absolute values ofa with argumentx52uau(1
2uyu) andK5(L11,L) if ( L2uM u) is ~even, odd!. At fixed
degree and order numerical solutions of the oblate sphero
wave equation are shown in Fig. 3 for varying values ofa.
For the function

F~y;a!5~12y2!21/2SL
M~y;a!

the oblate spheroidal wave equation yields the wave gu
equation

ā2ycr
4 2~ ā22eO!ycr

2 2eO1M22150

with the solution

2ā2ycr
2 5ā22eO6A~ ā21eO!224ā2~M221!

and the limit

ycr
2 5~eO2M211!/eO

at a50. Complex solutions of the oblate wave guide equ
tion are possible. However, as all solutions outside the
interval @21,1# they indicate nothing but the absence
wave trapping. In the vicinity of the critical latitude the fun
tion F satisfies the Airy-type equation

@~12ycr
2 !]x

22Wx#F'0

with x5y2ycr and
i-

al

e

-
al

W~ycr!52ycrS M221

~12ycr
2 !2

2ā2D .

This expression indicates that the trapping characteristic
the oblate equation are more complex than in the pro
case. At smalla and largeM oblate spheroidal functions ar
trapped in an equator-centered wave guide. On the o
hand, at large values ofa oblate spheroidal functions ar
trapped in a pole-centered wave guide.

Oblate spheroidal eigenvalues are real and a closed
pression foreO(L,M ;a) as function of its arguments is no
known. If a is small

eO„L,M ;~ ia!2@21…'L~L11!1O~a2!

while at large values ofa

eO~L,M ;a2!21!'2ā21āN.

For all values ofa the oblate eigenvalue exhibits the sym
metry

eO~L,M ;a!5eO~L,2M ;a!.

Numerically calculated oblate spheroidal eigenvalues
fixed zonal wave numberM50 are shown in the left pane
of Fig. 7 while the right panel of Fig. 8 shows oblate eige
values at Lamb parameter 10i for varying zonal wave num-
ber. Two major features of the oblate spheroidal spectr
are noteworthy. The oblate spheroidal wave operator p
sesses negative eigenvalues. In the text these negative e
values are responsible for eastward propagating Ros
waves. Secondly, the spectrum is degenerate. At sufficie
large absolute values of the Lamb parameter even and
eigenmodes coalesce or merge and an eigenvalue is
longer associated with a definite symmetry of the cor
sponding eigenfunction with respect to the equator.
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