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Trapped Rossby waves
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The possibility of tidal dynamics at strictly imaginary Lamb parameters has been known for more than three
decades. The present paper explores the prevailing physics in this parameter regime. To this end, basic features
of the global circulation such as baroclinicity and geostrophy have to be incorporated into tidal dynamics. The
tidal equations of the thermal wind are readily obtained in the framework of spherical bishallow water theory.
Density surfaces of a circulation with available potential energy alter the spatial inhomogenities of the generic
tidal problem. Wave dynamics in an inhomogeneous medium are characterized not only by a dispersion
relation but also by a wave guide geography: significant wave amplitudes are trapped in specific regions of
frequency-dependent width. As an inherently global issue, evaluation of the Rossby wave guide geography for
a given circulation cannot rely on the familiar regional filters of tidal theory. On the global domain, the Rossby
wave specification is given by the Margules filter. A thermal wind is stable against nondivergent Rossby wave
disturbances. Rossby waves propagating with a geostrophic wind are governed by prolate dgneairiesnb
parameterswhile imaginary Lamb parameters emerge for the oblate dynamics of Rossby waves running
against a geostrophic wind. Oblate Rossby wave dynamics include pole-centered wave guides and very low-
frequency disturbances propagating eastward against a westward wind.

PACS numbe): 47.35:+i, 92.10.Hm, 92.60.Dj, 47.32y

[. INTRODUCTION circulation are determined by the slope of its isopycnals.
With these features wave guide geography is clearly a global
Wave trapping is a classical topic in planetary waveissue. While regional approximations apply within a given
propagation. Historically the first, still approximate solution wave guide such as Matsuno’s theory applies inside the
to Laplace’s “tidal” equation[1] was Kelvin's equatorially Yoshida guide, the determination of the wave guide geogra-
trapped gravity wavg2] which currently plays a central role phy of a circulation has to consider the global domain. In
in intensive studies of the El Nino phenomen@4]. The  turn, the identification of trapping regions will suggest ap-
notion of an “equatorial wave guide” was probably first propriate approximations valid on these restricted domains.
introduced by Yoshid@5] and assumed a definite form with Moreover, wave guide geography will be subject to temporal
Matsuno’s equatorialB-plane approximation[6] of the  changes as the climate varies.
“tidal” equation. On the rotating planet, the curvature of the  Similar to the analysis of hydrodynamic instabilities the
planetary surface in conjunction with coordinate-dependenévaluation of wave guide geographies considers wave-
Coriolis forces provides an inherently inhomogeneouscirculation systems. However, in spite of this common for-
“background medium.” The latitude dependence of metricmal framework wave guide geography and stability proper-
and Coriolis forces establishes an equator-centered wawues are to be carefully distinguished. For climate dynamics
guide, the so-called “Yoshida guide.” This latitudinal inho- essentially three hydrodynamic instabilities are of greater
mogenity inhibits the communication of wave dynamical im- significance: statid¢i.e., Rayleigh-Benandinstability of the
balances beyond a certain frequency-dependent horizon, thmstably stratified fluid against internal gravity waves,
“critical latitude.” While wave functions are well approxi- Kelvin-Helmholtz instability of the stably stratified, verti-
mated by plane waves in the interior of the wave guide, theyxally sheared fluid against baroclinic gravity waves, and
behave as Airy functions near the critical latitude, oscillatingbaroclinic instability of the thermal wind against divergent
inside the guide and decaying exponentially on its outsiddRossby wave disturbances. Static instability involves fast
[7]. Moreover, topographic large-scale features of the planeonvective motions on small spatial scales and is generally
etary surface such as coasts and mountain ridges lead to tonet explicitly resolved in numerical global circulation mod-
pographically trapped waves, the coastally trapped Kelvirels of the ocean and the atmosphere. Rather, its basic role in
wave[8] being perhaps the best known oceanic example. driving the atmospheric Hadley circulation and the oceanic
In addition to these primary factors of planetary waveconveyor belt is taken into account by appropriate parametri-
guide geography, the global circulation of the oceans and theations. Kelvin-Helmholtz instability is associated with a
atmosphere itself affects the spatial distribution of trappingransfer of mean flow kinetic energy to baroclinic gravity
regions. A considerable fraction of the intensity and orientawaves. Since kinetic energies of terrestrial large-scale circu-
tion of the global circulation is controlled by pressure forceslations are generally small, this instability is considered to be
due to sloping isopycnals, i.e., sloping surfaces of constardf minor significance for climate variability. In baroclinically
density. Differential solar heating induces deviations ofunstable systems divergent Rossby waves draw on the avail-
isopycnals from equipotential surfaces thus generating thable potential energy of the circulation. This process is
available potential energ{Q] of the circulation. A stably thought to underly the meandering of the jet stream or the
stratified, vertically sheared flow of this type is called ther-North Atlantic Gulf Stream as well as the generation of ed-
mal wind and the wave trapping characteristics of such alies in the ocean and the atmosphere. It may also be noted
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that the development of hurricanes out of tropical Rossbyhe f-plane, quasigeostrophic theory or the equatogal
waves is not an instability of this type. Baroclinic instability plane. Quasigeostrophic theory is a midlatitude, plane wave
is considered the primary cause for the chaotic nature ofipproximation which utilizes an approximate version of the
Earth’s weather and possibly climate systems and providetidal wave guide equation as its generic dispersion relation.
the starting point for contemporary theories of geostrophidn fact, the concept has been developed to provide an easy-
turbulence. to-use Cartesian, constant-coefficient algorithm for the
In the framework of linear stability theory the analysis of @nalysis of wave-mean flow systems and the detailed study
these instabilities evaluates the system’s dispersion relatioff Paroclinic instability. On the other hand, this structure
and identifies wave growth with the emergence of complex€Xcludes wave trapping issues from the scope of quasigeo-

eigenfrequencies. A dispersion relation involves frequencieS'OPhIC theory. ane th . he soherical
and wave numbers or wave vectors, but no coordinates. On Matsuno'sg-plane theory approximates the spherical ge-

the other hand, wave guide geography considers the wyav@metry in the vicinity of the equator in terms of Carte_sian
guide equation.” This equation is also obtained from thecoordlnates. However, the success of this approach is not

system’s wave equation but in contrast to the dispersion regrimari.ly based on this _simplifiqation. R_ather, It is crucial
lation, it provides an expression for the critical latitude inthat thlshapp;r?r:qrrtl%tl?n IS (t:_on§|tsk:en\t( Wﬁhd the _\/(\j/a\{e glé'df?
terms of wave frequencies. In addition, it defines the in- and/€09rapny of the tidal equation. the roshida guide 1s a aeti-

exterior of the wave guide. As a relation between coordinateQite physical feature of the tidal equation and in the interior

and frequencies the wave guide equation does generally ngf & given wave guide th? curvature of fche planet's surface’ls
admit conclusions on the system’s stability properties. neglible. Moreover, the inherent consistency of Matsuno’s

The appropriate framework for the analysis of wave trap_approximation with Laplace’s equation is emphasized by the

ping is given by shallow water theory on the rotating Spheri_existence of various derivations of the concept similar to the

cal surface. At this time, a large fraction of climate studies is’a"€ty of arguments leading from the three-dimensional Eu-

based on Richardson’s primitive equations for a Boussinesgr equations to the shallow water approximation. Mgtsuno S
fluid near the surface of the rotating sphgt6]. While these _pproaqh is obtained by appropriate assumptions in space-
equations provide a consistent account of equilibrium circuliMme or in wave number space or in the function space of the
lations and their thermodynamics, they do not pose a Nevvt-Idal equation. It may allso be. r_loted that the space-time as-
tonian dynamical problem. The covariant formulation of hy- pects of the approximation originally go back to KelEi.

drostatic fluid dynamics is given by shallow water theory. As The ddomln_anc_e of reg'?_nfl"ll agpm);lm?rt]lons n pl)lar_1tetar¥
a vertically integrated approach shallow water theories rep\_/vave ynamics 1S essentially dué 1o the complexity o
component-wise geometrical considerations in curvilinear

resent hydrostatic vertical variability as internal variability of ) X
coordinates. In the framework of covariant shallow water

an otherwise strictly two-dimensional fluid. The non- i trical i Il understood and th
Euclidean intrinsic geometry of the spherical surface is ac- 1eory geometrical ISsues are well understood an € ma-
counted for by the nontrivial Riemannida1]. More than nipulation of basic equations, e.g., the derl_vatlon_of vorticity
equilibrium problems, spherical shallow waters address jsand energy budgets_ or wave equations Is stral_ghtfomard.
What remains unsatisfactory though is the analytical side of

sues of motion in the climate system. ; . )
a‘ghe theory. Eigenfunctions of planetary wave equations such

Planetary wave dynamics essentially consider lineariz Laplace’s tidal ion bel he cl f L4
tions of spherical shallow water theory. The key feature of2S Laplace’s tidal equation belong to the class o -

wave dynamics on the global scale is the spatial variabilit)}ions' Unlike functions of the hypergeometric type these

of geometric and Coriolis coefficients and the basic Wav<=.funCtiof1S are only poorly _und_erstood. Thl.JS’ planetary wave
equation on the rotating spherical surface is Laplace’sdynam'cs utilize the combination of analytical and numerical

“tidal” equation. It may be noted at this point that the name m.et.hods. While this approach cannqt_rely on the form_al sim-
“tidal” equation is entirely historical. The significance of plicity of a Cartesian, constant-coefficient framework, it does

Laplace’s equation lies primarily in the provision of the fun- ensure geomet.rlc c'on3|stencylon th'e global do”.‘a".‘- .
damental free modes of small amplitude motions on the ro- In the following, index notation will be used with indices

tating spherical surface. Furthermore, the application of thié“h'n’ e '23_'2 runn:]ng ovfer Iongitqdafand Ir?titUde.f{ l;d'
equation to a particulaigravitational forcing at a particular these coordinates the surlace metric of a sphere with radius

(tidal) frequency certainly does not exhaust its power. Ther/€ads

mally excited tides are a matter of longstanding meteorologi-

cal interesf{12]. Moreover, contemporary satellite altimetry

provides records of equatorial and basin-scale ocean waves

[13,14] primarily driven by wind and topography. The dy-

namics of these waves are indeed governed by the “tidal’while the Levi-Cevita tensor has the form

equation. The same applies of course to the tropical ocean

waves involved in the El Nino oscillation. While the notion €mn=2a%(N—m)cose.

of a “global” or “planetary wave equation” would be far

more appropriate, the historical name will be kept in theThe covariant derivative will be denoted by a semicolon. The

following. componentwise representation of geometrical tensors,
Although the wave equation on the global domain isChristoffel symbols and further details of tensoranalysis on

known for more than two centuries, geophysical fluid dy-the spherical surface are given elsewher®]. Braced indi-

namics discuss wave propagation and wave mean-flow syses ¢)=1,2 refer to the top and bottom layer of the fluid

tems essentially in terms of regional approximations such aand are not subject to the summation convention. Numerical

a’cose O

Imn= 0 a2
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solutions of Laplace’s tidal equation are based on a code Pmn=ImVnt+ R0t POmn=Pnm

developed by Swarztrauber and Kasaljda@ while numeri-

cal computations of spheroidal and related wave functiongs symmetric with respect to the indicesandn and involves
utilize NAG-Lib routine F02GJE a baroclinic stress tensor

Il. TIDAL EQUATIONS OF THE THERMAL WIND R pn= | Wi =1 1.RWW,=RIT,

The stably stratified fluid on the rotating spherical surfaceand the effective pressure
will here be represented in terms of spherical bishallow wa-
ter equation$15]. The idealization of the continuously strati- 1 -
fied fluid as a two-layer system is certainly an extreme sim- P=P(Rr)= 57(2)(1Jr oro)R?
plification. However, it does provide a qualitative and

consistent model of the dynamics of isopycnals and theiHere,y(/):g/p(/) with gravitational acceleratiog while
interplay with propagating disturbances. The bishallow water

equations govern the dynamics of the hydrostatic two-layer 8=y~ Y @)= Py~ Py Py
fluid with constant, but different layer densitiﬁ?)) and ver-
tically constant, but different layer velocitie\sén/ (t,\, ). is the basic stratification parameter of the two-layer fluid. For
The layer-mass per unit area is given as the stably stratified fluid is always positive. The prognostic
closure for the baroclinic subsystem is given by the shear
R=Ru)*R=pHw)Tr2)H2) equation(2.4) with

with layer thicknesses

Hay=ho(t,N, @) +hi(t,N, @), Hy=h(\,¢)—hyi(t,\, ),

Qmn=Vnimt (1=2r) Wy ;= Wpdml + €mnf,

wheref=2() sin¢ denotes the Coriolis parameter and
whereh, denotes the free surfade, the layer interface, and

h the topographic bottom. All three of these surfaces are u=v26(rR+p,)

assumed to be material surfaces. In this approach, the free _ )

surface and layer-interface play the role of isopycnals. ThéS an interfacial potential. The shear equati@m) represents

relative magnitude of the top layer is given in terms of thethe covariant, prognostic and nonlinear generalization of the
concentration-type variable familiar thermal wind equation. External forces included
here are given by
r= R(l) /R
. RF,=—9(Hd,p, —Rdsh)
such thaR ;)= (1—r)R. The system’s barycentric mass flux
equals the barycentric momentum densilyewton’s first  with surface pressurp,=gp, and the total layer thickness
law) and is defined as
= + =(1+ )
Jn=RVn=R[rV§11)+(1—r)V§12)] H H(l) H(2) (1 5I‘)R/p(2)
With vanishing vertical sheaw,,=0, the three limitsr

while the interfacial shear =0,=1 or §=0 reduce Egs(2.1)—(2.4) to the barotropic
W=V _y@) one-layer system
n n n
determines an additional, baroclinic mass flux HR+3I",=0, (2.9
In=r 1 ,RW,=r(1—r)RW,. I dnt(I™Vo)im+ d,P=RF,— €nnfI™, (2.6

In terms of these variables the bishallow water equations arghere the effective pressure
the continuity equation

1
HR+J",=0, 2.1 P:P(R)=§7R2

the concentration equation _ . . _ _
with y=g/p now is a function of the effective density

HRr+(rd"+1";,=0, (22 =pH alone. Moreover, in these limits the external forces
the barycentric momentum budget Fo=—0ds(p, /p—h)
m . _ _ m
Iedn Pl im=RFn = €maf I, 23 are always expressible in terms of a potential.
and the shear equation In the time-independent limit=0) the shallow water
equations admit simple stationary, zonally symmetrig (
D W, +W"Qp,+ dpu=0. (2.4  =0) solutions on the global domain. For the velocity field

The barycentric momentum flux tensor V,=a2U(coge,0),
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whereU is constant with the dimension of an angular veloc-represent a major aspect of the basic forcing mechanism of
ity the momentum budgé®.6) of the one-layer system takes the global circulation. Stationary, zonal, geostrophic solu-
the form tions of Egs.(2.5 and (2.6) with available potential energy
assume the form
a?(2Q+U)U cosg sing=—gd,(ho+p, /p)

R=Rg—Rgsirfe, V,=a?U(coge,0), 2.7
indicating that meridional pressure gradients drive this zonal
flow. Moreover, the balance involves terms linear in velocitywhereR,= Rg— Rp measures essentially the equator-to-pole
as well as quadratic terms. While the nonlinear terms argradient of the layer thickness while the constdnsatisfies
decisive for cyclostrophic flows, terrestrial large-scale circu-
lations exhibit velocities which rarely exceed a tenth of the U=-0=+J0%+ 27R0/a2.
rotation rate. In fact, the feasibility of “weather prediction
by barometer” and ocean “circulation estimation by hydrog- Expanding the root under the assumption thet’
raphy” on Earth rests on the simplicity of an essentially >27|Ro|/a* and choosing the plus sign leads to
linear relationship between wind speeds and ocean currents
on one hand and pressure forces on the other. Although the
arithmetical contribution of these nonlinear terms is certainly : . .
neglible for such geostrophic circulations, they will be keptas an approximate expression for the flow-speed in the low-

here. As they do not introduce formal difficulties into presentveloc.Ity limit. This is the usuz_al geostrophic relation of flow
amplitude and pressure gradient.

considerations it is not necessary to compromise the geo The geostrophic circulatio®.7) is essentially character-
metrical and physical consistency of the solution. In the fol-, 9 P ' y

lowing, the notion of “geostrophy” will be used in reference ized by one nondimensional parameter: the geostrophy pa-
to the orthogonality of flow and pressure gradients and no{ameter
necessarily imply a discard of nonlinearities. b=Ry/Re=2a2(2Q+U)U/2yRe .

Geostrophy is generally considered an extratropical equi-
|ibl‘ium,.n0t valid on the glObal domain. Here, it is seen thatTh|s parameter measures the equator-to_po'e gradient of the
the stationary momentum bugdet does not break down in thgressure at the bottom of the system and thus the intensity of
tropics but calls for a pressure extremum on the equatoithe zonal flow. It is comparable to Walker's climatological
Large-scale circulations on this planet exhibit indeed presnorth Atlantic Oscillation(NAO) index measuring the pres-
sure extrema in the vicinity of the equator. However, due tosyre difference between Lisbon and Stykkesholfizeland
topographic and thermodynamic details of the Earth’s surand thus the intensity of predominantly westerly winds in the
face, these extrema are generally not located on the equatpprre| cell[17,18. In the present case the velocity vanishes
with the rigid geometrical precision required by the abovefor constant layer thickness @=0 while the total layer
equations. Moreover, this simple geostrophic flow lacks thpjckness at the poles becomes zero lier1. Geostrophy
cellular structure particularly of the atmospheric circulation.yzrameters larger than one indicate that the fluid occupies
With time-independent nondivergent transports it does Nofess than the entire globe. Such cases will not be considered
involve rising or sinking motion. Essentially, it provides an i, the following. It is emphasized that the possibility of finite
idealized representation of the basic geostrophic balance ofyailable potential energy for this barotropic system rests
the global domain with the geometrical and physical consisassentially on the free surface. With a rigid lid the quantity
tency of spherical shallow waters. o R, and thus the geostrophy paramebewill always vanish.

The equilibrium pressure suggests the distinction of two ~The Lagrangian of Eq92.5) and (2.6) is invariant with
classes_of geostrophic flows: flows with constan_t layer thiCk'respect to particle relabeling and by Noether’s theorem the
ness driven by external pressurgs and flows driven by a = system thus conserves potential vorticity following particle
meridional gradient in layer thickness. In the first caBe ( trajectories. For the present geostrophic flow the potential

U~ yR,/a2Q

=const) the external surface pressure is of the form vorticity is given by
Px=Ps —gsife RZ= e, ;4 f=2(Q+U)sine. 2.9
with the equator-to-pole gradient In the low-velocity limit this reduces to the familiar approxi-
E P mationZ~ f/R. The potential vorticity gradient assumes the
q=p, — P, =a%(2Q+U)U/2y. form
Here, the free surface coincides with an equipotential surface R29,Z=2(Q+U)Rg(1+bsirte)(0,cosp). (2.9

and the flow has no available potential energy. This class of

solutions represents solid body rotation of the fluid layer. Quasigeostrophic stability considerations suggest that a sign
For the second class of these zonal circulations the extechange of the potential vorticity gradient is a necessary con-

nal surface pressumg, is constant and the system possesseslition for instability [19]. Here, it is seen that such a zero

available potential energy. This type of solution is of particu-crossing may occur for westward flows with<—1. This

lar interest to geohydrodynamics. The terrestrial climate sysindicates a fundamental difference in the stability properties

tem is primarily forced by differential solar heating. This of eastward and westward flows of the ty{®7): for west-

forcing provides the direct supply of the global circulation ward flows the stabilizing effect of the eastward rotation de-

with available potential energl9]. Hence, these solutions creases.
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Both of these types of geostrophic flows are readily genfluid particles but generally not under inter-layer relabeling.
eralized to bishallow water. Of primary interest here is theFor the barycentric potential vorticitg of the thermal wind
thermal wind, i.e., a stably stratified, vertically sheared geo{2.10), (2.11) one obtains
strophic flow with available potential energy. The corre-
sponding stationary, zonally symmetric solution of Egs. RZ=€"V;,+f=2(Q+U)sing+ €*"W,dar

(2.1)—(2.4) takes the form ) ] » o )
involving additional contributions from the system'’s vertical

R=Re—Rsife, Ryy= RY-RMsiPp, (2.10  Variability in terms of the cross product of vertical shear and
concentration gradient. In terms of layer vorticities the bary-

V,=a2U(cof¢,0), W,=a?W(coe,0), (2.11 centric vorticity reads

where RZ=R[r?Z 1)+ (1-1)?Z5)]+ €2"W,d,r .

_ _ _ _ This expression indicates that unlike the barycentric momen-
U=V +(a-NUe, W=Uy~Ug tum density potential vorticity is not an additive quantity.

The small-amplitude dynamics on the thermal wind are
JIow obtained by linearization of the bishallow water equa-
tions (2.1)—(2.4) around the exact solutiof2.10), (2.11).
This linearization is identical with standard procedures in
linear stability theory. In the present case the steady flow
R,r,Jdn,l,) is superposed by small amplitude disturbances
(m,7n,j,,in). The physical interpretation of these perturba-
tions is given by their relation to the corresponding small
19(1)=a2(29+U(l))U(1)=2y(2)(RO+5R§)1)), ?;znplittj/t(j/e))fjisturbancesn((/) ,VE()) of the layer variables
() Vn ')

with constantU ,, while Ry=Rg—Rp and RS, respec-
tively, denote the equator-to-pole gradient of the correspon
ing quantity. The surface pressysg is here assumed to be
constant and for finit&R, andR{") neither the free surface
nor the interface coincide with equipotential surfaces. For th
flow amplitude one finds from the stationary momentum
budgets(2.3) and (2.4

= 2 =
19(2) a (29+U(2))U(2) 2’)/(2)R0 m(l):rm+R7],
Neglecting the nonlinear terms this yields the shear approxi-

mation M2)=M—M(,),

W=~ ( '3(1)_ 19(2))/2&29% ’)/(2)5R(()1)/a29 and

. o _ o i-=R(v,— npW.)=R[rv+(1—r)v@1=jD 4@
in the low-velocity limit. This is the thermal wind relation in In=RVa= 7 Wo) =Rrvy (1= 0OViT1= 10 4 s
the narrow sense: the vertical shear of the geostrophic flow is

determined by stratification and the meridional gradient of

thel hyd(rjos_taticl pressure at the layer inter;:hge The th de[)- Here,my, represents vertical disturbances of the layer inter-
mal wind circulationEgs.(2.10, (2.11] is characterized by face whilem ;) measures the joint perturbation due to verti-

two nondimensional parameters. The geostrophy parameteg,| gisplacements of the interface and the free surface. The

barycentric and baroclinic momentum perturbations are
simple linear combinations of the corresponding layer quan-

messures agan the merdonal pressure gradient a he bS- O Steenty e tme inenval e srliudes of
tom of the system and thus the intensity of the zonal flow in Y

L governed by the linearization of the bishallow water equa-
the bottom layer. The baroclinicity parameter tions (2.1)—(2.4) around Eqs(2.10), (2.1

in="1RW,=r 1 RV —v@)=(1-1)j B —rj @

b=Ry/Re=a%(2Q+U ) U 2)/2y2)Re

1) 1 1) _ 1
b( )—R(() )/REE)—(19(1)_19(2))/2’)/(2)5R|(5) dom+jn;n:_RW1an7], (212
~ 72 (1)
~a“QW/ y;,6R
Y@)ore Rdy 7™, = — 1 WG m— ", 1, 2.13
measures the meridional pressure gradient at the layer inter- ) i
face and thus the vertical shear of the circulation. The pa- dojnt €mnF "+ y(2)RInM+ udymy)
(1) . . . _ ) )
rameterb'*’ vanishes if the system is shear-free and assumes = — WM, —2€n S, (2.14

values larger than one if the bottom layer outcrops at some
latitude so that the fluid poleward of this latitude is only a
one-layer system. Outcrops will not be considered in the fol-
lowing. =11 (W"9jn+2€mnS|™. (2.19

A key feature of the bishallow water equatio2sl)—(2.4)
is the layer-wise conservation of potential vorticity in the Equations(2.12—(2.15 are the tidal equations of the ther-
absence of external forcing, while the barycentric potentiainal wind. These equations are globally valid and geometric
vorticity is generally not conserved due to baroclinic vortic- approximations are not involved. Advection in the barycen-
ity sources. By Noether’s theorem, the Lagrangian of bishaltric and baroclinic subsystems are due to different mean flow
low water is hence invariant under intralayer relabeling ofvelocities and

dlin+ EmnFlim-‘r(l—l’),uo"nm(l)



PRE 61 TRAPPED ROSSBY WAVES 1473

do=0+Ud,, dy=d,+ud, where the mean potential vorticity gradient of the barotropic
mean flow is given by Eq(2.9). For the positive definite
denote the corresponding partial substantial derivatives witperturbation energy
baroclinic advection velocity

1
— 2
u=(1-r)Ug)+rUy. e= Ev”vn+ym 2R,
Similarly, one has for the effective Coriolis parameters Egs.(3.1) and(3.2) yield the budget
F=rFu)+(1-1F@e), F1=(1-1F@q)+rFy Roe+(ed+s");,=0

with F(,=2(Q+U(,))sine=RZ ) for individual layers  with Poynting vector
and
Sh=7yYMj,

indicating that perturbation energy is conserved in the sense
The representation of the linearized pressure forces in terne Gauss’ theorem. The systefB.1) and (3.2 governs the
of (m,m(;)) has been chosen for convenience and transitiomlynamics of small-amplitude disturbances of a barotropic
to the (m, ) representation is a matter of simple algebra. geostrophic circulation with available potential energy. If the

In spite of its idealization and linearity the systé¢&n12)— geostrophy parametdr and thus the available potential en-

(2.15 addresses a wide range of phenomena which are cuergy vanishes Eq$3.1) and(3.2) reduces to Laplace’s tidal
rently considered essential to climate dynamics. These inequations. In this case
clude the propagation of barotropic andirst mode )
baroclinic gravity and Rossby waves as well as linear stabil- yR=gH=c"=const,
ggltr;icr)frgcfgr gHeeons(;[(r;,)pEJqCé!rlczl)Jl_a(téc.T; %nezgfmrﬁwt:“;%mge” wherec denotes the intrinsi(_: phase speed of the barotrop_ic
thresholds and growth rates for static, Kelvin-Helmholtz an ne-layer system. In t_he strict sense the mean flow veloc_lty
baroclinic instability. The quasigeostrophic approximation to; also vanishes in this limit which constitutes the generic
Egs.(2.12—(2.19 is given by Phillip’s two-layer modgR0] tidal problem.. : .
and in the limit of vanishing mean available potential energy, The generic tidal equations pose the_fundamental wave
the system has been used to evaluate the Kelvin—HeImhoIthOp.""gat'or.‘ problem on the gIc_JbaI domain and thus are the
instability condition on the rotating spherical surfd@&l]. starting point of wave-circulation theory. Alth(.)th these
Here, it is of particular interest that Eq®.12—(2.15 also equations are known_ for more th_an wo centuries th_e com-
determines the wave guide geography of the thermal win(ﬁ’let_e analyt_|cal soluuon o.f this linear problem is still not
[Egs. (2.10, (2.10] and the system will hence be used to available. Tidal eigenfunctions belong to the class of doubly

determine the distribution of trapping regions for Rossbyp.erIOdIC or Lame‘un(_:tlons. Physmally, tidal dynamlcs_ con-—
Waves. sider wave propagation in an inhomogeneous and anisotropic

medium. The primary sources of inhomogenity are the cur-
vature of the planetary surface and the Coriolis forces. Since
lll. GLOBAL ROSSBY WAVES both, metric and Coriolis forces only depend on latitude,

The specification to Rossby waves calls for the definitionzonal wave dynamics differ significantly from those in me-
of a Rossby wave filter for the tidal equations of the thermalridional direction. Due to this anisotropy tidal eigenfunctions
wind (2.12—(2.15 which applies on the global domain. This are of the form
will here be evaluated in the framework of the one-layer
limit of Egs. (2.12—(2.15. In this case the perturbation dy-
namics reduce to

e (= MMNE(yN,M) (3.4

with frequencyw, zonal wave numbel, mode numbeN,
. _ and y=sing. Solutions of this type propagate only in the
dim+j";,=0 (3.2 o : L .
zonal direction and do not involve meridional propagation.
In this framework all phase as well as group velocities are
exclusively zonal. Moreover, zonal variations are well repre-

These equations are also obtained by linearization of th&ented by plane waves. For the standing meridional wave
barotropic shallow water equation@.5), (2.6) around the this is not the. case. The latitudinal mhomogemﬂgs pf the
stationary, geostrophic circulatid@.7). With the mean flow rotating spherical surface prevent the communication of
potential vorticityZ given by Eq.(2.8) the perturbation po- Wave dynamical imbalances beyond a certain critical latitude

dijp+ €mnFi™+ YRI,M=0. (3.2

tential vorticity z of the one-layer system is defined as and waves are trapped in zonally oriented, channel-like wave
guides. Near the critical latitude, meridional wave functions
Rz= €V, ;,—Zm. behave as Airy functions, oscillating inside the wave guide

and decaying exponentially on its outside. The width of the

The budget of this quantity is obtained by taking the curl ofwave guide is determined by the inhomogenities of the me-
Eg. (3.2 dium as well as the kinematics of the wave. Thus, latitudinal
inhomogenity introduces a pronounced regionalization of

Rdz+j29,Z2=0, (3.3 wave activity on the rotating spherical surface. The wave
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guide geography of the tidal problem and generally of all 15
wave-circulation systems is the global distribution of trap-
ping regions given by the central and critical latitudes of all 1L
wave guides. =30
The wave guide geography of the nonrotating planet de
pends on the curvature of the spherical surface and—sinc
poles are arbitrary—on the frequency and propagation direc
tion of the wave. On the rotating planet rotation introduces ¢
genuine anisotropy and wave guides are zonally orientec
For the generic tidal problem th@mondimensional Lamb 05 k-
parameter

o=’

05 -

Tida! Eigenfunction
o

a=2al/c -1r

N=4, M=-10

provides the basic measure of the ratio of the rotation veloc . ‘ ‘
ity and the intrinsic phase speed of the wave. On Earth, thi 90 -%0 I
parameter assumes a wide range of values. For given Ear @
radiusa and rotation ratd) variations of the Lamb param- 100.00
eter express variations of the intrinsic phase spedd the
following, reference to baroclinic modes in conjunction with 1000 |
the barotropic one-layer system implies the “reduced grav:
ity” or “equivalent height” interpretation of Eqs(3.1)—
(3.3). The Lamb parameter vanishes in two distinct limits:
either the planet does not rotat€ £0) or the waves are
nondivergent ¢— o). For barotropic modes in the tropo-
sphere it assumes valuas=3 while =60 for tropospheric

first baroclinic modes. In the ocean~5 in the barotropic LT T e o oo 1 do 100
case andv~300 for waves in the first baroclinic mode. The (o) vamo Perameter e Peremeter e Peremeter
Lamb parameter controls the trapping characteristics of tide
eigenfunctions. With the eigenfunctions of the tidal problem,
its (nondimensionaleigenfrequencies

0 60 20

(BN

=
S

Frequency v

0.10 ¢
M=0 M=1

—
&

v=aw/c=v(N,M;a) 300

Frequency v

=30

[
6 -18 0 8 -30 0
Zonal Wave Number M Zonal Wave Number M Zonal Wave Number M

also depend on the Lamb parameter. In addition to the spe:
trum, wave dynamics in an inhomogeneous medium detel
mine the wave guide geography in terms of the critical lati-
tude

30

Y= Yo V.M ) ©

FIG. 1. (a) Tidal eigenfunctions. Mass fluy for Rossby wave

ant_:ll_rt]he Centralrllatltgde of the_ gl:|de|. ti fh ic tid ith N=4, M=—10 at Lamb parameters=3,30,300.(b) Tidal
€ comprenensive numerical solution of the generic tida ispersion relation, Lamb representation. Solid lines: numerical so-

problem has been given by Longuet-Higgliz2]. Essential | yion of Egs.(3.1) and (3.2) atb=0. Dotted lines, left and right
features of these tidal eigenfunctions are shown in Fig. 1. Iihanel: (3.8 and (3.10. Dotted lines, middle pane(3.7). Dashed-
addition to the trapped solutions shown in Figa)lthe tidal  gotted line:»=c. (c) Tidal dispersion relation, Matsuno represen-

equation also has untrapped solutions oscillating on the eRation. Solid lines: numerical solution of Eq&.1)and (3.2) at b
tire domain. If waves are trapped the central latitude of the=. Dotted lines:3.8) and(3.10. Dashed-dotted liner=a.

wave guide is the equator. The generic tidal problem only

admits the equator-centered Yoshida guide. This wave guidenique operation since tidal eigenfrequenaiedepend only

is by no means a narrow, tropical channel: with decreasingn integeMN andM. For the left (@=3) panel of Fig. {c) the

Lamb parameter the Yoshida guide extends to moderate arMargules convention has been chosen while the midele (

even high latitudes. Similar to Airy functions the amplitude =30) and right =300) panel follow the Matsuno conven-

of tidal eigenfunctions increases towards the critical latitudetion. Both Figs. 1b) and Xc) exhibit the characteristic east-
The solid lines in Figs. (b) and Xc) show tidal eigenfre- west asymmetry of the tidal spectrum. Gravity waves propa-

quencies obtained from the numerical solution of the generigate to the east as well as to the west and the lowest eastward

tidal equationg3.1) and(3.2). Fig. 1(b) is the “Lamb rep-  gravity mode is the Kelvin wave. For the generic tidal prob-

resentation” v=wv(a,N;M) of the dispersion relation at lem low-frequency Rossby waves propagate exclusively to

fixed zonal wave numbevl while Fig. 1(c) gives the “Mat-  the west. Both wave types are seperated by the Yanai wave

suno representation’=v(N,M;«) at fixed Lamb param- which behaves Rossby-like at small valuesaofind gravi-

eter. For the Matsuno representation it is noted that the linktylike at large Lamb parametef83,24].

age of eastern and western branches into one mode is not a On the basis of dispersive features of gravity waves on an
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f plane(Poincarewaves it is often assumed that there are no This inclusion of solid body rotation generalizes the kine-
gravity waves with frequencies belofyv In tidal theory the matics of the generic tidal problem with respect to the rela-
quantity corresponding to the Coriolis parameter of thetion of advection, Doppler shift and the modification of the
f-plane approximation is the Lamb parameterin the dis-  Coriolis parameter. One wave equation of the tidal problem
persion diagrams(b) and Xc) the dashed-dotted line marks is obtained by taking the divergence of Eg.2) and elimi-
frequenciesv=a. While it is obvious that the generic tidal Nnating the perturbation momentum with the result

problem does not admit Rossby waves with frequencies 2 2

higher thaneg, it is also seen that there are numerous gravity (¢ + FAL(dE+F#—c®A)d;+ c®e™F pdmIm
modes with frequencieg<a. This is clearly the case at =—c?D™"9,,F25,m, (3.5
those large values of the Lamb parameter that are relevant

for baroclinic ocean waves. Only at very small valueseof where

do all gravity frequencies exceed the Lamb parameter. In

tidal theory the seperation of gravity and Rossby modes is D™ =g™d+e™"F.

not provided by the Coriolis parameter but by the Yanai__ . . . . -
This equation governs all waves involving a finite mass per-

mode assuming a similar role as the well known Lamb wave

between internal gravity waves and acoustic modes. Moreturbation. However, since the tidal problem also admits non-

over, the Matsuno representation far=300 corresponds d|verge;nt Rossby waves, the null space of@qS) conta_lns
guantitatively most closely to the set of first baroclinic nontrivial solutions. These are _EXpI'C't_EIV included in the
modes observed in the ocean. This diagram is frequentl ore ge_neral vector wave equation whmh foI_Iows from tak-
associated with “tropical waves” in view of the small width ng thitme—denvatlve of Eq3.2) and eliminating the mass
of the corresponding Yoshida guide. However, it is emphaPerturoation

sized that extratropical features of the generic tidal eigen- 21 E2_ 2A) i+ 2 a(Ebi )+ Eajb:, 1=
functions do not introduce additional or qualitatively differ- (d; C*A)dijnt Cena I°(Fjo) +Fj70]=0

ent dispersion properties. This is seen in Fifc) from the with

Matsuno diagrams fow=3 (corresponding approximately

to barotropic modes in the ocean and the troposphemd 1

for a=30 (corresponding approximately to first baroclinic Ajn=0% a0~ Gani®= ( A— —z)jn,

modes in the troposphereboth diagrams exhibit qualita- - a

tively the same structure. What does differ at these parameter 5 . .
values is the width of the Yoshida guide extending to mod-WNeréGan=2a “ga, denotes the Ricci tensor of the spherical
rface[21]. This vector wave equation is the general tidal

erate and high latitudes. In this sense the Matsuno diagralshu . | i on is obtained
provides a qualitatively complete picture of the generic tidalVave eguation. A useful auxiliary wave equation is obtaine

dispersion properties. Unlike wave propagation in homogepy mult.iplying it With. the gradient of the quiollis parameter
neous media the tidal dispersion relation does not sugge d using the vorticity budge8.3). For vanishing geostro-

that all disturbances populate all of the globe nor does iP1Y Parameter the vorticity budget reduces to

provide information on the regions populated by specific dis- am . p2
: . o . j%Fa=—R"dz
turbances. The issue of geographical distribution of waves is
addressed by the wave guide equation. ~and one obtains from the vector wave equation above
Interestingly enough the numerical solution of the tidal
problem did not initialize extensive studies of wave-  RZ[(d2+F2—c2A)d;+c?e™F ,dn]z=C3(AF)|";,.
circulation systems on the global domain during the three (3.6

decades since its publication. Currently, issues of dynamical
stability of the climate system are exclusively discussed orPince EQ.(3.6) involves vorticities and divergencies it is
the basis of regional approximations such as Matsuno’§learly not a closed equation. However, if the Laplacian of
theory or the quasigeostrophic approximation. These apthe Coriolis parameter is neglibly smdkssentially inside
proaches provide approximate analytical expressions for thé€ Yoshida guideor the disturbances are only weakly di-
corresponding dispersion relation and, in the case of Matvergent equatiori3.6) is seen to provide a fairly simple, yet
suno’s theory, the wave guide equation. Expressions of thiglobally valid approximation for waves with finite potential
type admit quite general conclusions on the modification ofvorticity. In essence(3.6) is the spherical generalization of
wave propagation and trapping due to mean flows as well alatsuno’s wave equation on the equatogaplane. In the
the mean flow response to small amplitude disturbances. Afollowing (3.6) will hence be addressed as the “spherical
though the complete analytical solution of the generic tidaMatsuno equation” or simply as the Matsuno equation.
problem is not available at this time there are exact analytical Adopting the separation ans&t@.4) for the mass pertur-
solutions in special cases and analytical approximations coyationm, equation(3.5) becomes
ering the entire wave number space of the tidal equation. 5 5o o
These elements of the complete analytical solution do pro- (1= 7%y?) (A= a?y?+ 12— 7M)m
vide a basis for t_he anglysis of aspects of propagation,. trap- - 2[7,2(1_y2)y(9y+ M]m,
ping, and wave circulation interplay on the global domain as
well as the identification of well-defined Rossby wave filters.ywhere

In the following a finite circulation velocityd will be
reintroduced while keeping the geostrophy parameter at zero. T=alv=2(Q+U)/(wg—UM)
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andv now denotes thénondimensionalDoppler-shifted fre- W, x<0 for y2<y§r
quency
standing waves oscillate equatorwards of the critical latitude
v=ao/c=a(wy—UM)/c and decay exponentially towards the pole. Thus, standing
gravity waves with frequencies<a are trapped in the
equator-centered Yoshida guide with a width inversely pro-
portional to the Lamb parameter. Standing gravity waves
a=2alQ+U|/c with frequencies higher tham are not subject to wave trap-
ping. Moreover, it is seen that an eastward circulatibh (
is the modified(nondimensional Lamb parameter and the >0) narrows the wave guide while a westward circulation
inequality |U|<Q always holds for large-scale flows on (—{<U<0) widens it. Similarly one finds the wave guide
Earth. For the Matsuno equation the divergence can be elimpduation for nonrotating gravity waves
nated using the equations of motit§11)—(3.3) and the sepa- > 2 rrovy 2
ration ansatZ3.4) yields Ye(Q+U=0)=(v"—M)/v

with the frequencyw, (of dimension 1/s€cseen by an ob-
server rotating with the planet while

(1—qy?)(A—a?y2+ v+ M) z= —2[q(1—y2)y<9y— ™1z or using the dispersion relatid3.7)

with y2(Q+U=0)=A/(A+M?)

q=v? (2= M?). with

In special cases, exact analytical solutions to these equations A(N,M)=N(N+1)+(2N+1)[M].

are known in terms of prolate spheroidal wave functionsrhis expression indicates that trapping due to the surface
[25,26. In addition to the mode and zonal wave numberse,ature alone affects primarily waves with large zonal

these functions depend on the Lamb parameteat small  \yave numbers. i.e. zonally short waves. For Me tide
values ofa they behave as Legendre functions while they,yith =« one obtains

resemble Hermite polynominals at large Lamb parameters.

Details of spheroidal wave functions are given in the Appen- a2y‘c"r_ (2a%—M )y§r+ a’—M?>+M=0
dix. Known exact analytical solution27,28 of the tidal
problem satisfy the dispersion relation and for nondivergent Rossby waves

1P~ ep(N,M—1;a)v—aM=0, (3.7 y2(c—®)=1+0M,

whereep denotes the prolate spheroidal eigenvalue. This diswhereo=1/7. In this case, the dispersion relati@7) yields
persion relation is exactly valid @ +U=0 (nonrotating 5 )

gravity wave$, v=a (M,-tide, the principal lunar tidal sig- yelc—®)=Al(A+M?)

nal), M=0 (standing waves and c—c (nondivergent
Rossby waves While (3.7) is an exact analytical result for
these four special classes it does remain a limitation that
closed expression fogp as function of its arguments is not
known. In practicg3.7) is exploited with the help of power
series and asymptotic expansions &(«) as well as nu-
merical solutions of the prolate spheroidal wave equation
For standing wavesM =0) solutions of(3.7) based on nu-
merical computations oép(N,1;«) are seen in the middle
panel of Fig. 1b).

The trapping characteristics of tidal eigenfunctions are de
fined by the existence of a critical latitude in the vicinity of
which the function exhibits Airy-type behavior. This critical
latitude follows directly from the wave equation. For stand-
ing waves M =0) the Matsuno equation reduces to

demonstrating the close resemblance of the trapping charac-
heristics of nondivergent Rossby waves and nonrotating grav-
ity waves. In general, wave guide equations admit complex
solutions. However, such roots do not indicate an instability
of the underlying and in the present case trivial ground state,
but simply an absence of wave trapping. Physical solutions
fo wave guide equations are necessarily confined to the real
interval [—1,1]. Unlike the dispersion relation, wave guide
equations yield information on the regionalization of small-
amplitude perturbations.

In addition to these exact solutions the wave equations
(3.5), (3.6) suggest various approximations which provide an
overview of the entire wave number space of the tidal equa-
tion. Of particular interest here is the Matsuno equation
(3.6). Inside the Yoshida Guide or for weakly divergent
[(1—y2)a§— a?y?+ 12]z=0 waves this equation reduces essentially to

2,,2 2 A~
indicating that an Airy approximation holds in the vicinity of (A—afy™+v°—7M)z~0.

ygr(M =0)= Vzlazzwgm(QJrU)z This approx.imation is a gIobaIIy defined' prolate spheroidall

wave equation. Prolate spheroidal solutions of the approxi-

and is of the form mate Matsuno equation are shown in Fig. 2. In comparison
to Fig. X(a) it is seen that these functions qualitatively as well

[(1—y§r)a§—wcrx]zmo, as quantitatively capture all features of tidal eigenfunctions.

In fact, the degree of agreement between the numerical so-
wherex=y—y., andW,=2a?y.,. Since always lutions and these spheroidal approximations suggests that the
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15 - ; ‘ ' ‘ cal fluid dynamics. The dispersion relati¢®.8) provides a
common basis for modes with finite potential vorticity. At
1h =3 1 large intrinsic phase speeds—{«) this relation reduces to
=30 the exact solutior{3.7)

05 f 1 wo=UM—2(Q+U)M/L(L+1),

ot ] where L=N+|M|. This is Margules’ classical result for
nondivergent Rossby wavd27]. In the largee limit the
=300 | wave guide equatiof.9 becomes

Prolate Spheroidal Wave Function

yo=1+0oM

N=4. M=10 in agreement with the previously obtained exact expression.
‘ ‘ , ‘ , Furthermore, using the asymptotic expangisee Appendix
-9 -60 -%0 ¢ %0 60 90 for the prolate eigenvalue at large values of the Lamb param-
Latitude

eter(3.8) becomes

FIG. 2. Prolate spheroidal wave function. A9=4, M=10 at 5 5
Lamb parametera =3,30,300. ’—[a(2N+1)+M“Jv—aM=0.

complete analytical solution of the tidal equation can be ex-This is the familiar dispersion relation of Matsuno’s equato-
pressed in terms of prolate spheroidal wave functions. ~ fial B-plane theory{6,8]. Inserting this dispersion relation
The dispersion relation of the approximate Matsuno equalto the wave guide equatiof8.9) one finds
tion follows as 2
Ve~ (2N+1)/ e,
*—ep(N,M;a)v—aM~0 (3.9

the classical expression for the Yoshida Guide of Matsuno’s
while the wave guide equation becomes in this case B-plane theory8]: at large values of the Lamb parameter the
width of the wave guide is independent of the zonal wave-
length. Solid body rotation merely modifies the width of the
1_y§r Yoshida Guide: an eastward circulation narrows it while a

westward circulation widens it.

Similarly, one finds for high-frequency gravity waves with ~ The Matsuno wave guide equati¢B.9) also provides a

y>a a Spheroida| approximation with dispersion relation direct link to readily observable large-scale disturbances in
the ocean-atmosphere system. Setting

2
3 M
i~

+a2y§r) v+aM. (3.9

32— ep(N,M;a) v+ aM~0. (3.10
k=M/acose, F=2(Q+U)sing, B=2(Q+U)cose/a

Using numerically computed prolate spheroidal eigenvalues,
the eigenfrequencie3.8) and (3.10 are shown as dashed this equation assumes the form
lines in Fig. 1. Frequencies> « and the Kelvin frequencies
at large« are obtained from Eq3.10 while other low fre- C3(Yer) = (C*+ F2/K?) C(Ycp) +C?Ber/ K
guenciesv<<a of gravity and Rossby waves are calculated _ ) o
with Eq. (3.8). It is seen from Fig. 1 that these spheroidal With C(yc) = w/k. For gravity waves this expression is suf-
approximations generally represent tidal eigenfrequencieficiently approximated by
satisfactorily. However, gaps in the dotted lines for the 5 5 2o
Kelvin and Yanai waves at moderate Lamb parameters indi- Calye)=c"+Felk
cate that the approximatior{8.8) and(3.10 break down in
this parameter range. FaX=0, small M and moderate
Lamb parameters

stating that at the same zonal wavelength trapped gravity
waves with wide Yoshida guides are faster than gravity
waves with narrow guides. A corresponding eastward propa-
(epl3)3<(aM/2)? gating wave front is frequently observed as atmospheric tele-
connection pattern in conjunction with EI Nirf@9]. Over
so that two of the roots of Ed3.8) and two of the roots of the Pacific this pattern is enhanced by low-latitude trades and
Eq. (3.10 become complex. Since it is known from the nu- midlatitude westerlies. It is furthermore seen that this ap-
merical solution that all eigenfrequencies are real this inproximation closely resembles the familfaplane dispersion
equality indicates the invalidity of the simple spheroidal ap-relation. However, it is emphasized thiaplane dynamics
proximations to Eqs(3.5), (3.6) in this parameter range. In only approximate the zonal features of tidal dynamics and do
these cases the right hand sides of H8sH), (3.6) are not  not account for the anisotropy of the rotating spherical sur-
neglible. In a small and restricted domain of wave numbeiface. Tidal functions which approximately satisfy this disper-
space the spheroidal approximation to the wave equationsion relation(rather, wave guide equatipdo not behave as
(3.5), (3.6) is thus inconclusive with respect to stability. plane waves in the meridional direction. This interpretation
In spite of this applicability restriction, these formulas also clarifies the absence of Poincaraves with frequencies
generalize various well known approximations of geophysi-below F: tidal gravity modes with lower frequencies or



1478 DETLEV MULLER AND ERNST MAIER-REIMER PRE 61

slower zonal phase speeds are trapped in narrower wawation of the global domain, its uniqueness in space-time,
guides and do not exhibit a significant amplitude at the latisvave number space and function space the Margules limit
tude given byF,. [Egs. (3.1, (3.12] provides the geometrically and physi-
For Rosshy wave€3(y,,) is neglibly small and the Mat- cally appropriate filter of tidal dynamics for the analysis of
suno wave guide equation is sufficiently approximated by Rossby wave guide geographies of arbitrary circulations.

2 21,2 2
Cr(Yer) = —CBe/(Ck+F5) IV. ROSSBY WAVE GEOGRAPHY

. OF THE THERMAL WIND
stating that at the same zonal wavelength trapped Rossby

waves with wide Yoshida guides are slower than Rossby It has been shown in the previous section that a mean
waves with narrow guides. A corresponding westward propaeirculation affects the wave guide geography. In the simple
gating wave front is readily observed in satellite altimetry of case of solid body rotation without available potential energy
the Pacifid13] as well as the Atlanti€14] sea surface asso- such modifications remain limited to changes of the width of
ciated with wind-driven oceanic Rossby waves. Tidalthe Yoshida guide. This section considers more significant
Rossby modes approximately satisfying this wave guidealterations induced by a circulation with finite geostrophy
equation are not well represented by plane waves in the latand baroclinicity parameters. The governing equations of the
tudinal direction. basic wave-circulation system are the tidal equations of the
The wave dynamics given by Eq®.8), (3.9) unify Mar-  thermal wind[Egs.(2.12—(2.15]. Of particular climate rel-
gules’ nondivergent Rossby waves with Matsuno’s equatoevance are low-frequency Rossby wave disturbances and the
rial B-plane approximation. The underlying wave equationglobal Rossby wave-circulation system follows from Egs.
(3.6) is not really new. Its equatorig-plane version is dis- (2.12—(2.15 by application of the Margules filter. This re-
cussed in most text books on quasigeostrophic theory as @uires to consider the tidal equations of the thermal wind for
prototype of ageostrophic motion. What is different, though,
is the demonstration that these ageostrophic dynamics pro- JMa=@"+rj");,=0.
vide a common basis for all Rossby modes of the generic ) . i
tidal equation. This is clearly seen in FiggbLand Xc): all In terms of layer perturbations these conditions imply
Rossby frequencies are well approximated by ). nn N, n L
The basic requirement for the identification of trapping UmT@)n=lan=0
regions of general wave-circulation systems is the considers-O that also
ation of the global domain. The spheroidal approximation
(3.9), (3.9 of the Matsuno equatiofB.6) exhibits essential iny: =0
features of an appropriate global Rossby filter of tidal dy- (@)

namics: it applies on the entire spherical surface and capturgg view of the dynamics of nondivergent Rossby waves it is
the low-frequency Rossby and gravity modes of the tidahence convenient to transform Ed8.12—(2.15 from the
spectrum. However, due to the breakdown of this approxipjishallow representation to the 2-layer representation. This is

mation for the Yanai mode at- moderate Lamb pal’ameters Ebtained by appropriate linear combination of Ec&la_
has to be discarded as ambiguous with respect to stabilityp 15 and one arrives at

conclusions.
Nevertheless, the key to the ageostrophic global Rosshy d(/)m(/)ﬂ?/) n=0,
wave dynamics of Eq93.8), (3.9) is the neglibility of the
r.h.s. of Eq.(3.6) due to the small divergence of these dis- d(/)jﬁ/)+€mnF(/)J'En/)+ R(/%nP()=0.
turbances. In the limit—o the generic tidal equations as- ' '
sume the forni27] Here
jn;nzor (31]) d(/):5t+U(/)(9)\, R(/)=R|(5/)(1—b(/)5|n2<p)
dijn+t €maF ]+ 9,p=0. (3.12  with geostrophy parameters
The only eigenmodes of Eq3.11), (3.12) are divergence- b(/)=Rg/)/RfE/)=a2(ZQ+ U(/))U(/)/Y(/)R(E/)

free global Rossby waves. This limit represents the Margules

filter of Laplace’s tidal equation. Its space-time versiggs.  while one finds for the pressure perturbation

(3.11), (3.12] corresponds uniquely to the previously used

Margules limit in wave number space and the related eigen- p ;)= y;mg)+v.Mz), P2)=v2(M(1)+Mz)) = y,m.
functions of the generic tidal problem are Legendre func-

tions. Thus, the Margules filter is well defined in space-time With the Margules filter the layerwise mass flux perturba-
wave number space, and in the function-space of the genertions can be represented in terms of stream functigns

tidal operator. The basic wave mechanism in this regime is

the imbalance of horizontal momentum disturbances and re- jﬁ/)
storing Coriolis forces. As with all nondivergent fluid mo-

tion, pressure forces maintain a divergence-free mass fluxand the curl of the layerwise momentum budgets yields
Moreover, the large- limit does not impose restrictions or

modifications on the underlying circulation. With its preser-  L(R()A = @R/)da)d()— €™RE ) dmZ (1 9n] A =0.

= EnmﬁmA(/)
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For both layers these potential vorticity budgets have theand the “potential”

same form and layer indices will therefore be dropped in the

following. While divergent disturbances seperate the tidal 15 1
equations of the thermal wind into barotropic and baroclinic V(q)=bMTsn2—(1—b)[std2— ( M2 Z)SCZ
subsystems, the Margules filter seperates the system with

respect to layers: nondivergent Rossby waves propagate imhere

dependently in individual layers with the mean vertical shear

as the primary seperation-agent. The Rossby wave dynamics sn=sn(q|b)

of the thermal wind are thus given by the dispersive and

trapping characteristics of the nondivergent eigenmodes cindsd andsc correspondingly denote Jacobi’s elliptic func-

two structurally identical systems of the for(8.1) with fi-  tions[25] of argument and parametes. It follows from Eq.
nite geostrophy parameters. (4.3 that the dispersion relation for E¢4.1) is of the form
Since the mean potential vorticity gradief®.9) of the
geostrophic flow in an individual layer satifies o=0(N,M;b)=—M/e(N,M;b) (4.9
R29,Z=Rd,F—Fd,R with (nondimensionaleigenfrequencies
the perturbation potential vorticity budget may be cast in the o=1/r=(wo—UM)/2(Q+U)
form

and eigenvaluee. Since the wave operatg#.3) is self-
R(Ad,— €°F d,)A=D?"R,d,A. (4.2 adjoint its spectrum is real and hence the eigenfrequencies of

Eq. (4.2) are real. This is the statement of linear stability of
For vanishing available potential energy,R=0), Eq.(4.1 the thermal windEqgs.(2.10, (2.11)] as well as the barotro-
obviously reduces to the Margules wave equation of the gepic circulation with available potential enerd®.7)—(2.9)
neric tidal problem. In the following, the spectrum and waveagainst nondivergent Rossby wave disturbances. It is
geography of the full equatio.1) will be considered. As- stressed that this does not claim the linear stability of these
suming the stream function to be of the fof814) one ob-  wave-circulation systems in general. Kelvin-Helmholtz in-

tains for Eq.(4.1) stability involves divergent baroclinic gravity waves and
baroclinic instability is assumed to be due to divergent
V(A+7M)A= —2(buyd,— M)A (4.2 Rossby waves. Such disturbances are not included in Eq.
_ 4.7).
with From the Schrdinger equatiori4.4) one obtains readily a
U=1-y2, v=1-by2 general expression for the critical latitude
To the author’s knowledge an ordinary differential equation Yer=Yel o, M:D). (4.6
of this structure is not in the literature and its analysis has t%etting
employ approximate analytical methods in conjunction with
numerical integrations. There are two alternative forms of V(Qy) =E
this equation with advantages for specific questions. An ob-
vious transformation casts E¢t.2) into the form and using the trigonometric representation of Jacobi's elliptic
y ) functions[25] one finds
29 9 —y| —— — =
v2ay S ay=v| TM) 2tM|[A=0 (4.3 b?M ryg+basye—azye—E=0

clearly exhibiting the self-adjoint character of the wave op-with
erator. Secondly, introduction of the latitudinal coordinate

y
qu dx 1/\uv
0

5
a4=bM2+§(1—b)—bMT+l

) _ and
and transformation to the function
9
v =yt A 2;=2bM?+7M - Z(1-b)*+2.

leads to the Schrdinger equation ) ) . )
In this form, Eq.(4.6) is the general wave guide equation for

(PP+E-V)¥=0 (4.4  nondivergent Rossby waves on a thermal wind. In the limit
d of solid body rotation:b=0 and the wave guide equation
with eigenvalue (4.6) reduces to
E—s 2 M-wm2 2_ M2+ Mre Mr— S| ~1+ oM
=5 50T TM— Y= ™3 2~ o
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in agreement with the Margules limit—~ of the Matsuno A=S,“_"(y;\/§)~U|M|’2e‘xz’2HN(x),

wave guide equation(3.9). Minor discrepancies between

both expressions are due to the fact that @g6) refers to  \where Hy(X) is the Hermite polynominal of ordeN=L

the functionW while Eq.(3.9) applies to the stream function —|M| and argumenk=yBY4 This approximation captures
A. If the layer thickness vanishes at the poles the geostrophihe oscillatory and trapping characteristics of prolate sphe-
parameter assumes the vahie 1 and the wave guide equa- roidal wave functions as shown in Fig. 2. F@¥1 applica-
tion becomes tion of the spheroidal operatd®.7) to this representation

leads to the Hermite equation
(Y2~ 1)(Mry2+M7+M2+1)=0 k

_ M2
with two roots 22— 2xd+ ~1|Hy=0

VB

and thus for the eigenvalue
For the second solutiory,, will become imaginary indicat-

y2=1, y2=—(M2+Mr+1)/Mr=—(1+aM).

ing the absence of wave trapping but not an instability of the ep~(2N+ 1)\B+ M2,
ground state. In the limit of low frequencies—0 the wave
guide equatior{4.6) reduces to the simple expression Since the prolate spheroidal eigenvakieis positive it fol-
lows from Eq.(4.5) thatM has to be negative and f8rto be
y§r= 1/|b|. positive the geostrophy parameterlso has to be negative.

Hence, in the prolate case, Hg.7) represents nondivergent,
At large absolute values of the parameegeostrophic cir-  westward propagating Rossby waves on westward winds
culations thus effect a pronounced regionalization of nondisuch as the trades{1>0b<0,M<0). For the dispersion
vergent low-frequency waves. The wave guide equado®  relation (4.5) this eigenvalue yields
alone does not provide information on which side of the
critical latitude the wave function is oscillating. This issue oM?+(2N+1)\2bMo+M=0
requires consideration of the derivative of the potentiéd)
with respect tag at the critical latitude. However, the result- which is sufficiently approximated by
ing expression is not very transparent and it is more conve-
nient to use analytical approximations of £4.1) as well as a~M/2b(2N+1)? (4.8
numerical solutions. . - , iy

Approximate analytical expressions for the eigenfunctionsat _Iow frequencies. Similar to Matsuno’s theory the critical

of Eqg. (4.1) can be obtained in the limit of small absolute latitude follows as
values of the geostrophy parameter. Wjtij<1 the first

2
order Taylor expansion of ! yields for Eq.(4.2) yi~(2N+1)/\B. (4.9
(A—By?>—M1)A~0, (4.7) In the prolate case, metric and circulation cooperate to estab-
lish an equator-centered wave guide geography. Pronounced
where equatorial trapping of divergence-free, westward propagating
Rossby waves requires a strong westward circulation. The
B=2bM/o basic structure of this approximation closely resembles Mat-

_ ~_suno’s theory. However, in the present case theplane”
denotes the square of an effective Lamb parameter. This is @ordinate is given by=yBY4 This definition becomes

spheroidal wave equation. However, unlike the wave equagoid if the geostrophy parametbrvanishes. In contrast to a
tions of the generic tidal problem, E@.7) is not necessarily mere tangential plane, regional approximations of the

prola:te. Only if diSturb.anceS run with the winblM >0 and Matsuno_type rely on the wave geography of the underlying
in this case, Eq(4.7) is a prolate equation. On the other gjrculation.

hand, for disturbances running against the wipit<0 and For waves running against the wind the square of the
in this case, Eq(4.7) is an oblate spheroidal wave equation effective Lamb parameter becomes negatBe:0 and the
[25,26]. Both cases differ significantly with respect to their siream function is given by the oblate spheroidal wave func-

wave guide geographies. tion
At b=0, the effective Lamb parameter also vanishes and
Eq. (4.7) reduces to the classical Margules limit of exclu- A:gﬁﬂ(y;i JIB)).

sively westward propagating Rossby waves on a circulation

without available potential energy. This system has been disFhese functions are shown in Fig. 3. In the oblate case the
cussed in the previous section. As longBasemains small competition of trapping effects due to the metric and the
the stream functiorA behaves essentially as a Legendrecirculation generates equator- as well as pole-centered wave
function. However, although the approximatidd.7) is  guides. The possibility of tidal dynamics at strictly imaginary
based on small absolute values of the geostrophy parameteamb parameters was first pointed out by LindZ&@,22.

b, the square of the effective Lamb parameBecan well  Longuet-Higgins[22] demonstrated that the generic tidal
become large particularly for low-frequency wavesBlis  spectrum at imaginary Lamb parameters is real and the tran-
positive and largeB>1 the stream functior\ is approxi-  sition from prolate to oblate tidal dynami@o ipsois not
mated by[26] associated with instability. Since then oblate tidal dynamics
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03 ‘ ‘ , for nondivergent Rossby waves propagating against a geo-
strophic wind with available potential energy. Since the ob-
N=4, M=-10 late spheroidal eigenvalue is not necessarily positsee
Appendix, Figs. 7 and)&wo cases have to be distinguished.

For
0.1

a=30i

o>|bM|/2N?

the oblate eigenvaluey is positive. According to Eq4.5

a=3i the zonal wave numbéVl has to be negative in this case and

I for B to be negative the geostrophy paramdidnas to be
=300i positive. Hence, this regime applies to westward propagating
Rossby waves on an eastward windM<0,b>0M <0).

On the other hand, at very low frequencies

Oblate Spheroidal Wave Function

-1 05 0 05 1 o<|bM|/2N?

Sin (Latitude)

FIG. 3. Oblate spheroidal wave function. R4, M= —10at  the oblate eigenvalue, is negative and zonal wave numbers
Lamb parameters = 3i,30,300. M have to be positive while geostrophy parameterare
negative. This case represents eastward propagating Rossby

have not received much attention primarily because th&vaves on a westward windbM<0,b<0,M>0). Unlike the
physics underlying oblate behavior remained essentially ungeneric tidal problem the tidal equation of the geostrophic
clear. With spherical shallow water theory wave-circulationwind with available potential energy also admits eastward
systems can be considered on the global domain and Rropagating Rossby waves at very low frequencies. Formally
emerges here that Rossby waves running against a gethese eigenmodes are a consequence of negative oblate sphe-
strophic wind are governed by oblate tidal dynamics. roidal eigenvalues. The oblate wave guide geography of the
A major feature of oblate spheroidal wave functions isLaguerre-limit of Eq.(4.7) follows now much the same way
their degeneracy at large absolute values of the effectivBohr’s quasiclassical atomic theory follows from the quan-
Lamb parametef26]: at some moderate value of the imagi- tum mechanics of a Coulomb partic[@0]. For x/2>1,
nary Lamb parameter the eigenvalues of even and odd solgtream functions basically decrease exponentially and one
tions coalescg¢see Appendix, Figs. 7 and.8At large abso- obtains thus for the width of the pole-centered wave guide
lute values of the imaginary Lamb parameter there are two
spheroidal wave functions with identical eigenvalue. For 1—lyal~11B[=1/4b|N, (4.1
large absolute values of the effective Lamb parameter oblate

spheroidal wave functions are well approximated]§] where the dispersion relatio@.10 has been used in the
second equation. At small geostrophy parameters, higher

SEA(y;i \/|§|)~U|M\IZE—X/ZL\I<M\(X), modes of Rossby waves running against the wind are trapped
in the vicinity of the pole. For small absolute values pf

whereLL""'(x) is the generalized Laguerre polynominal of largeB approximations to Eg4.7) in the oblate as well as
orderk =(L—|M|,L—|M|—1)/2 if (L—|M]) is (even, odd in the prolate case apply essentially at large mode numbers
and argumen1x=,2|B|1’2(1—|y|). This representati’on ac- N..Similar to the Hermite a_lpprc_)ximation for the Y_oshida.
counts for significant wave amplitudes in the vicinity of the ?hwde,lthe Laguer_r((je apprp>;:matu;n k_)e(ilomes meaningless if
poles. While Hermite polynominals are known from the eTp;]o ar \;]vavgdgtljl € vanis etsrgl ystlca}[hy. i
quantum oscillator, the Schilimger wave function of quan- € spheroidal approxima '0(. .7) to the wave equation
tum particles in a Coulomb field is given by generalized@"l) provides a qualitative Overview Of the Qynamlcs of non-
Laguerre polynominalg30]. Inserting this approximation divergent Rossby waves on a circulation with small geostro-

into the spheroidal equatiod.7) one arrives with B|>1 at phy parameter. A more detailed quantitative picture of the
the Laguerre equation wave dynamics of nondivergent Rossby waves on a geo-

strophic flow is obtained by numerical integration of Eq.

(4.1). These integrations are not restricted to weakly geo-
ec—B |[M|+1

X2+ (M| +1—X) dy + _ LM=0 strophic circulations. The employed code evaluates a dis-
4y|B| 2 cretized version of Eq(4.3) with 400 points in the interval
ye[ —1,1] using NAG-Lib routinero2GJefor geostrophy pa-
and obtains for the eigenvalue rametersb<1. Figure 4a) shows the Matsuno representa-
tion of the dispersion relation for geostrophy parameters
eo=B+2NV/B, =-3,0,1, while the Lamb representation fik=—4,— 1,1
is given in Fig. 4b).
whereN=2K+|M|+1 is given by L +1.L) if (L—|M]) is The middle panel of Fig. @) with b=0 represents Mar-
(even, oddl With Eq. (4.5 this eigenvalue yields the disper- gules’ Rossby modes of the generic dispersion relatson
sion relation and is here given for reference purposes. Numerically calcu-

lated antisymmetric solutions of Ed4.1) for westward
o=—M/8bN? (4.10 Rossby waves on an eastward circulation witk-1 are
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FIG. 6. Stream function of pole-trapped, eastward Rossby
waves on westward circulation.

J ‘ exist two eigensolutions: an eigenfunction which is symmet-

0.0 - 0.0 0
-1 1] -2 -1 1] 1 -2 -1 [} 1 . . . .
(b) Geostrophy Parameter b Geostrophy Parameter b Geostrophy Parameter b ric with respect to the equator as well as an antlsymmetnc

eigenfunction. Antisymmetric solutions of E@l.1) at nega-

FIG. 4. (a). Rossby wave frequencies. Matsuno representation afve eigenvalues are shown in Fig. 6 clearly exhibiting the
geostrophy parametets=—3,0,1. (b) Rossby wave frequencies. nole-trapped nature of these solutions. Eastward propagating
Lamb representation for zonal wave numbbts-—4,—1,1. Rossby waves are exclusively due to the finite available po-
tential energy of the westward circulation. Eastward Rossby
waves (i.e., negative eigenvalugsdegeneracy and polar
trapping are characteristic features of oblate spheroidal wave

that the spectrum ab=1 exhibits the characteristic oblate Jpnctions Figures 5 and 6 show that the oblate trapping char-
coalescence of eigenfrequencies. Figure 4 demonstrates fa&teristics of Eq(4.1) at large absolute values df differ

thermore that sufficiently large positive geostrophy param-

eters(eastward circulationlead to the emergence of Rosshy from thqse at small g(_aostrophy parameters. Pole-centered

waves with frequencies exceeding the Lamb parametery:\"”we guides bepome wider as the absolute vallezofd the

o>1. As such high-frequency Rossby modes are excluded inode numbe_N Increase. . L

generic tidal dynamics their appearance here is a sole conse- T_he gomblna_\tlon of a_nalyt|cal approximations anq nu-
merical integrations provides a comprehensive overview of

ggre]nce of the finite available potential energy of the C|rcula-the eigensolutions of Eq4.1). A sufficiently strong geo-

_ . . trophic circulation with available potential energy signifi-
The left panel b=—3) of Fig. 4a) and the right panel . S
(M=1) of FF:g. 4(b$)show)very Iog\]/v g(ig:;)enfrequencgi]es gf east- cantly affects the regional distribution of Rossby wave am-

ward propagating Rossby waves. It is emphasized that fo'?“tUdes' Westward waves propagating on a westward wind

each eigenfrequency at a positive zonal wave number the@© trapped in an equator-centered wave guide. Wes_tward
waves on an eastward wind can have high frequenaies

02 ‘ ‘ ‘ >1 and are trapped in a pole-centered wave guide. West-
ward winds allow very low-frequency eastward propagating
Rossby waves trapped in the vicinity of the poles. Matsuno-
b=1, M=-10 type regional approximations exist for the interior of the
orr equatorial as well as the polar wave guide.

Westward Rossby waves on westward trade winds are
widely observed in the tropical troposphere. The effect of the
intensity of the trades on the meridional width of these dis-
turbances is governed by E@.1). For Rossby waves in the
tropical ocean the mean circulation plays a minor role and
these disturbances are sufficiently represented by generic
Matsuno theory. At higher latitudes, the circulation of the
troposphere as well as the antarctic ocean is essentially east-
ward and disturbances propagate generally with the flow.

, , Equation(4.1) does not represent wave-circulation systems
s (Lgmude) 08 1 of this type. In these cases the inclusion of divergent distur-
bances is necessary. For the high latitude stratosphere, the

FIG. 5. Stream function of pole-trapped, westward Rossbyspectrum of Rossby waves propagating against the wind is
waves on eastward circulation. not known at this time.

~

shown in Fig. 5. The right panel of Fig(& as well as the
left (M= —4) and central {1 = — 1) panel of Fig. 4b) show

Stream Function
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V. SUMMARY guide and becomes void if the wave guide vanishes physi-
cally. An ageostrophic spherical Matsuno equation unifies

The mathematical physics of global wave-circulation Sys_l\/largules’ nondivergent Rossby waves with Matsuno's
h

tems are given by spherical shallow water theory. The tida eory. This unification represents all Rossby modes of the

equations of the thermal wind govern the small-amplitude o ) . .
dynamics of a bifluid in a non-Euclidean geometry. Metric 9eneric tidal spectrum. The unique and covariant Rossby fil-

and Coriolis forces on one hand and the circulation on th ter of _t|da| d_yn_am|cs is given by Margules’ largehmit .

. o .. This filter eliminates all but low-frequency, ageostrophic,

other cooperate and compete in establishing the system’s in-_ "~ . . X )
! . . nondivergent Rossby modes from the tidal equations. As it

homogenity and anisotropy. The resulting background struc-

. o retains the global domain of tidal dynamics, the Margules
ture effects a pronounced regionalization of low-frequenc

V. . . .
disturbances. The dynamics of equator-trapped wavefs”ter is appropriate to determine the global Rossby wave

closely resemble quantum mechanics in a potential welfgUIde geography of general circulation systems.

while pole-trapped waves behave similar to atomic particle The Margules filter decomposes the tidal equations of the
. P PP . nic p ?hermal wind into two independent layer subsystems with the
in a Coulomb field. Various transport mechanisms of the

. . . : o vertical shear as the major separation agent. Rossby wave
climate system globalize regionally confined variability. . . )
A . oo . . dynamics on the thermal wind are thus determined by the
Earth’s climate is primarily forced by differential solar

heating. This forcing supplies the global circulation with spectrum and wave geography of the nondivergent eigen-

available potential energy. The spherical shallow water equar-noqes of two .structurally identical tidal equations with
tions admit simple stationary. zonal and aeostrohic Soluf;tvallable potential energy. Both layers and thus the thermal
. ) mp ary, 9 phi wind are linearly stable against nondivergent Rossby wave
tions with available potential energy. In the barotropic case,, . .
these solutions form a one-parameter family where the geocj|sturbanf:es. The wave gwdg geography of th_e thermal V\{'nd
strophy parameter essentially coincides with the climatologi—IS determined by the cooperation and compe_t|t|on of trapping
cal NAO-index. Finite available potential energy does noteffects due to surface curvature and Coriolis forces on one

require the circulation to be baroclinic. For the bishallow"and and the cwc_ulgtlon on the other. In_ the pro_late case
fluid, corresponding thermal wind solutions form a two- curvature and Coriolis forces cooperate with the circulation

parameter family. In addition to the geostrophy parameter, 4! €stablishing an equator-centered wave guide. A westward
thermal wind is characterized by a baroclinicity parameteirculation enhances equatorial trapping of westward propa-
measuring the vertical shear in terms of the amplitude of th@ating, divergence-free Rossby waves. In the oblate case cur-
baroclinic pressure gradient. Linearization of the bishallowvature and Coriolis forces compete with the circulation and
water equations around such a stationary circulation yield§0th, equator-centered as well as pole-centered wave guides
the tidal equations of the thermal wind. These equations gowvare possible. Oblate dynamics govern nondivergent Rossby
ern the dynamics of small amplitude disturbances of a stablyvaves propagating against the wind. For sufficiently strong
stratified, stationary, zonal, geostrophic and verticallycirculations these Rossby waves are trapped in a pole-
sheared circulation with available potential energy. In spitecentered wave guide. Westward circulations admit very low-
of their relative simplicity the tidal equations of the thermal frequency eastward propagating Rossby waves while west-
wind address a wide range of essential dynamical issues @fard Rossby waves on intenser eastward circulations exhibit
the climate system. In addition to the propagation of barotrofrequencies in excess of the Lamb parameter. Oblate degen-
pic and (first mode baroclinic gravity and Rossby waves eracy admits symmetric as well as antisymmetric modes at
they determine the linear stability of the thermal wind asthe same eigenfrequency. Regional approximations in terms
well as the regional distribution of wave activity. of orthogonal polynominals exist for both, prolate and oblate
The distinguishing feature of wave dynamics on the glo-yave guide geographies. In the prolate case wave functions

Eal scaIeS is _tr|1e rggti)ﬂnaliz?tir(])n of Ipw—;rquencly ?iswr'inside the Yoshida guide are approximated by Hermite poly-
ances. Spatial variability of the metric, the Coriolis forces,, 41 essentially corresponding to Matsuno’s theory. In-

and the circulation generate an inhomogeneous and aniSQiye the polar wave guide, on the other hand, wave functions

tropic background that traps low-frequency waves in zonally, re approximated in terms of generalized Laguerre poly-

oriented wave guides. In addition to the spectrum, globalaOminaIS Both approximations depend on the phvsical exis-
wave dynamics are thus characterized by a wave guide ge- : pp P phy

ography. For the generic tidal problem the regionalization ofence of the wave guide. . o
wave activity is determined by the equator-centered Yoshida 1H€ Present paper demonstrated the regionalization of
guide. Depending on frequency, this wave guide extends tgongilvergent elgenmodes.on a cwpulaﬂon W!th available po-
moderate and high latitudes. In the vicinity of the critical {€ntial energy. The inclusion of divergent eigenmodes will
latitude, tidal eigenfunctions differ significantly from plane @lS0 raise the issue of instabiliies and their geography.
waves. At this time, wave-circulation theory still lacks the While the results of this study imply a regionalization of the
complete analytical solution of the generic tidal problem. Onsusceptibility to wave growth, the variability of the circula-
the entire wave number space, approximate analytical soluion is generally global in nature. From El Nino dynamics
tions in terms of Lamdype spheroidal wave functions are inside the oceanic Yoshida guide it is well known that coast-
known. In special cases, exact analytical solutions can bally trapped Kelvin waves as well as atmospheric teleconnec-
represented in terms of these functions. At large Lamb pations provide modes of globalization for regionally confined
rameters spheroidal approximations coincide with Matsuno’variability. Complete global variability patterns are deter-
equatorial B-plane theory. Unlike an arbitrary tangential mined by the composite effect of wave activity as well as
plane, this concept approximates the interior of the Yoshidadvective and diffusive transports.



1484 DETLEV MULLER AND ERNST MAIER-REIMER PRE 61

APPENDIX: SPHEROIDAL WAVE FUNCTIONS ‘ ‘
. . 300 - i
In contrast to functions of the hypergeometric type, the oblate prolate
literature on spheroidal wave functions is not very extensive
[26,31,32. Basic properties are given in RgR25]. Prolate 200 |
spheroidal wave functionsﬁ"(y;a) of integer degre¢. and
orderM satisfy the equation §, o0 | |
M2 g
dy(1=yH)dy— —— —a’y’+ep |9 (y;a)=0 .
for real Lamb parameterg and remain regular at the poles 100
y==*1. At small values ok, prolate spheroidal wave func-
tions behave as Legendre functions M=0
-200_ - - L
SEA()’, a2< 1)~ PLM(y) = " Lamb Pgrameter " 2
while they are approximated by Hermite polynominals at FIG. 7. Spheroidal eigenvalues. Lamb representation Mor
large « =0.
2
S(y;a?>1)~(1—y?)MIZe ™2 (x) ep(L,M;a?<1)~L(L+1)+0(a?)

with argumentx=y\|e| and orderN=L—[M|. At fixed  phile at large values of the Lamb parameter
degree and order numerical solutions of the prolate spheroi-

dal wave equatio_n are shown in Fig. 2 for varying The ep(L,M;a?>1)~(2N+1)|a| + M2+ 0(|a|°).
Lamb parameter is seen to control the wave guide character-
istics.

For the function

Fy;e)=(1-y?) Y25 (y; )

the prolate spheroidal wave equation yields the wave guide
equation Numerically calculated prolate spheroidal eigenvalues at
- 5 5 5 fixec_i zonal wave numbevi =0 are_shown in the right pa}nel
a’yo—(a’+ep)ygtep—M +1=0 of Fig. 7 while the left panel of Fig. 8 shows prolate eigen-
values ate= 10 for varying zonal wave number.

Oblate spheroidal wave functio%"(y; i;) of integer de-
2a2y§r= a?+ ep* \(a®— €p) 2+ 4aX(M?—1) greelL and ordeM satisfy the equation

For all values ofa the prolate eigenvalue exhibits the sym-
metry

EP(L,M;Q)ZEP(L,_M;Q’).

with the solution

and the limit M2
Iy(1=yHay~ 5 —ay e S'(y;a)=0
-y

yo=(ep—M?+1)/ep

at «=0. The critical latitude decreases with increasing Lamb
parameter. In the vicinity of the critical latitude the function s

F satisfies the Airy-type equation st
500
[(1-yg)dZ—Wx]F~0
° 600 ®
. 2 %
with x=y—y, and g 5
M?2—1 g 400 % =
W(ye) = 2ycr< 2.2 + a2> - é_ %e;
(1_ycr) @ @
5 ]
.. . . & 8 1oof
For finite M the inequality 200
Wx<0 o
o=l
always holds ify?<y2 and hencer oscillates exclusively %0 o 0 10 2 ™o 0 0 0 2
Zonal Wave Number M Zonal Wave Number M

equatorwards of the critical latitude. The prolate spheroidal

wave equation only admits an equator-centered wave guide. FIG. 8. Spheroidal eigenvalues. Matsuno representation. Left
A closed expression for the prolate spheroidal eigenvaluganel: prolate eigenvalues @t=10. Right panel: oblate eigenvalues
is not known. Ife is small ata=10.
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for Lamb parameterSz:iEwith real a and remain regular M2—1 —
at the poleg/=+ 1. At small values ofx oblate wave func- W(Yer) =2Yer 1oz«
tions behave like Legendre functions while they are approxi- (1=ye)

mated by generalized Laguerre polynominals This expression indicates that the trapping characteristics of
the oblate equation are more complex than in the prolate
case. At smalkr and largeM oblate spheroidal functions are

trapped in an equator-centered wave guide. On the other

at large absolute values af with argumentx=2|«|(1 h - ,

. . : and, at large values ot oblate spheroidal functions are
—ly|) andK=(L+1L) if (L—[M]) is (even, oddl At fixed trapped in agpole—centered wave gﬂide.
degree and order numerical solutions of the oblate spheroidal Oblate spheroidal eigenvalues are real and a closed ex-

\IévanheC}uati?_n are shown in Fig. 3 for varying valuesaof pression foreq(L,M; @) as function of its arguments is not
or the function known. If « is small
F(yia)=(1-y) "5 (y; ) oL, M;(ia)?>—1)~L(L+1)+O(a?)

the oblate spheroidal wave equation yields the wave guid@hile at large values of
equation

SM(y;a?<—1)~(1—y?)MIZg=x/2 Ml(y)

eo(L,M;a?<—1)~—a?+aN.
T2 A 2 2 2 —
—(a?— —€eotM?—1=0 _ "
a’yeo— ("~ €0)Ye— €o For all values ofa the oblate eigenvalue exhibits the sym-

with the solution metry

2a%y2 = a?— eo* \(a?+ €0)2— 4a?(M2—1) co(L,M;@)=¢éo(L, ~M;a).

Numerically calculated oblate spheroidal eigenvalues at
fixed zonal wave numbevl =0 are shown in the left panel

of Fig. 7 while the right panel of Fig. 8 shows oblate eigen-
values at Lamb parameterilfdr varying zonal wave num-

at «=0. Complex solutions of the oblate wave guide equa-ber' Two major features of the oblr_alte spheroidal spectrum
tion are possible. However, as all solutions outside the redi® noteworthy. The oblate spheroidal wave operator pos-
interval [—1,1] they indicate nothing but the absence of SESS€S negative eigenvalues. In the text these negative eigen-
wave trapping. In the vicinity of the critical latitude the func- Values are responsible for eastward propagating Rossby

and the limit

ygr:(fo_ M2+ 1)/60

tion F satisfies the Airy-type equation
[(1-yZ)d;—Wx]F~0

with x=y—y, and

waves. Secondly, the spectrum is degenerate. At sufficiently
large absolute values of the Lamb parameter even and odd
eigenmodes coalesce or merge and an eigenvalue is no
longer associated with a definite symmetry of the corre-
sponding eigenfunction with respect to the equator.
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